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Motivation: contributions to private retirement pension

data on 3077 persons from EU-SILC 2010

goal: model contributions to private retirement pension
=⇒ response=log contributions

categorical covariates
I age: ordinal, 11 categories (base: 16-20)
I income class (in quartiles): ordinal, 4 levels (base: 1.quartile)
I gender: nominal, binary (base: male)
I child in household: nominal, binary (base: no child)
I federal states: nominal, 9 levels (base: Upper Austria)
I employment status: nominal, 4 levels (base: employed)
I highest education achieved: nominal, 10 levels

(base: secondary or lower)
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Linear regression model

for a categorial predictor with levels c ∈ {0,1, . . . ,K}
define baseline category (e.g. c = 0)
define dummy variables

xk =

{
1 if c = k
0 otherwise

y = µ+ x′β + ε, ε ∼ N
(

0, σ2
ε

)
x = (x1, . . . , xK ) design vector/covariate vector,
β = (β1, . . . , βK ) regression parameter

effect of one covariate is captured by a set of K regression coefficients
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SILC data: 95% HPD-intervals
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Carinthia Lower Austria Burgenland Salzburg Styria Tyriol Vorarlberg Vienna

Effects of age class (upper left), income (upper right), education (lower left) and
federal state (lower right)
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Sparsity for one categorical predictor

Model

y = µ+
K∑

k=1

xkβk + ε, ε ∼ N
(

0, σ2
)

Sparsity: effect of the covariate can be modelled by less than K
regression coefficients

All level effects are zero. =⇒ Exclude covariate (group selection).
Some level effects are zero. =⇒ Select level effects (within-group
selection).
Some levels have the same effect. =⇒ Fuse level effects.
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Bayesian modelling

Achieve sparsity via appropriate prior distributions

covariance mixture of multivariate Normals
(Pauger and Wagner, 2017)

I model low or high partial correlation between effects
I spike and slab prior on effect differences

model based clustering of level effects
(Malsiner-Walli et. al., 2017)

I many spiky Normal components
I sparsity is achieved by prior on the mixture weights to encourage

empty components
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Covariance Mixture of Multivariate Normals

β|τ2, δ ∼ N
(

0,
K
2
τ2Q−1(δ)

)
τ2 ∼ G−1(g0,G0)

Q(δ) determines the structure of the prior precision matrix,
depending on δ

δ is a vector of binary indicators
τ2 is a scale factor
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Prior for unrestricted effect fusion

δkj defined for each pair of effects 0 ≤ j < k ≤ K
=⇒ δ has

(K+1
2

)
elements

prior precision matrix

Q(δ) =


∑

j 6=1 κ1j −κ12 . . . −κ1K

−κ21
∑

j 6=2 κ2j · · · −κ2K
...

...
. . .

...
−κK 1 −κK 2 . . .

∑
j 6=K κKj


elements κkj depend on the corresponding indicator

κkj =

{
1 if δkj = 1
r >> 1 if δkj = 0

and κjk = κkj for j > k .
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Structure matrix; Examples

K = 4: δ = (δ10, δ20, . . . , δ40, . . . δ43)
r = 1000

δ10 = 0

Q(δ) =


1003 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4


δ21 = δ34 = 0

Q(δ) =


1003 -1000 −1 −1
-1000 1003 −1 −1
−1 −1 1003 -1000
−1 −1 -1000 1003
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Properties of the effect fusion prior

results from spike and slab prior on effect contrasts
I set β0 = 0 and define effect contrasts

θkj = βk − βj for 0 ≤ j < k ≤ K

I spike and slab prior

θkj ∼ δkjN
(
0, τ2)+ (1− δkj)N

(
0,
τ2

r

)
I determine marginal prior for β = (θ10, . . . , θk0) taking into account

for linear dependence
θkj = θk0 − θj0

all pairs are taken into account in the same way =⇒
prior is invariant to choice of the baseline
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Marginal prior on regression effects
joint prior on the indicators

p(δ) ∝ |Q(δ)|−1/2r
∑

(1−δkj )/2

computationally convenient as |Q(δ)| cancels out in the joint prior

prior concentrates at
I βk = 0
I βk = βj

Figure: Simulation from the effect fusion prior: Plot of (β1, β2) for c = 3 and
hyperparameters g0 = 5, G0 = 2, r = 1000 (left) and r = 10000 (right)
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Prior for restricted fusion
no direct fusion of level effects k and j : set κkj = 0
examples

I ordinal covariate: fusion restricted to adjacent categories

κkj = 0 j 6= k − 1

Q(δ) =


κ10 + κ21 −κ12 . . . 0 0
−κ21 κ21 + κ32 . . . . 0

...
...

...
. . .

...
0 0 . . . −κk,k−1 κk,k−1


I variable selection: restrict fusion to the baseline

κkj = 0 j 6= 0

Q(δ) =


κ10 0 . . . 0 0
0 κ20 . . . . 0
...

...
...

. . .
...

0 0 . . . 0 κk,0
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Posterior inference

1 MCMC: start with δ = 1
I sample β

F compute the prior precision matrix Q(δ)
F sample β from the conditional Normal posterior N (bn,Bn)

I compute the effect differences θ

I sample δkj from p(δkj |θkj , τ
2)

I sample τ2

2 model selection: minimization of Binder’s loss

L(z, z∗) =
∑
j 6=k

(
`1I{zk=zj}I{z∗

k 6=z∗
j } + `2I{zk 6=zj}I{z∗

k =z∗
j })

where z is the true and z∗ the proposed clustering
3 refit of the selected model (with fused levels)
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Simulation Study

Set-up:

100 data sets of size N = 500

four ordinal C1, . . . ,C4 and four nominal predictors C5, . . . ,C8

covariate effects

I relevant ordinal: β1 = (0,1,1,2,2,4,4) , β3 = (0,−2,−2)
I relevant nominal: β5 = (0,1,1,1,1,−2,−2), β7 = (0,2,2)
I irrelevant: β2 = β6 = (0,0,0,0,0,0,0) , β4 = β8 = (0,0,0)

Results
both zero and non-zero effect differences are identified well
lower averaged MSE (than in the full model and other methods)
predictive performance only slightly worse than in the true model
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Simulation: Predictive Performance
new data set of 500 observations from the regression model
prediction of new observations using the selected model and
parameters estimated in each of the 100 data sets

Full Fusion Penalty BLasso BEN GLasso GLap SGL BSGS True

1.
10

1.
15

1.
20

1.
25

Mean squared prediction error
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EU-SILC: Results

effect of education
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9   University: doctoral degree

8   University: first degree

7   Vocational school for apprentices

6   College for higher education

5   Academic secondary school

4   Other vocational school

3   Nurse's training school

2   Master craftman's diploma

1   Apprenticeship

0   Secondary school degree

0 0 0 0 0 0 0 0 0 1

0 0 0.99 0.99 1 0.99 0.99 0.99 1 0

0 0 0.99 0.99 1 0.99 0.99 1 0.99 0

0 0 0.99 1 1 0.99 1 0.99 0.99 0

0 0 0.99 1 1 1 0.99 0.99 0.99 0

0 0 0.99 0.99 1 1 1 1 1 0

0 0 0.99 1 0.99 1 1 0.99 0.99 0

0 0 1 0.99 0.99 0.99 0.99 0.99 0.99 0

0.87 1 0 0 0 0 0 0 0 0

1 0.87 0 0 0 0 0 0 0 0

0 0.2 0.4 0.6 0.8 1

Fusion Probability

final model: same fit but sparser
I 11 regression effects (full model: 35)
I σ̂2 = 0.829 almost identical to the full model (0.826)
I BIC: 8240.69 (full model: 8402.00)
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Sparse finite mixture prior

Model

y = µ+
K∑

k=1

xkβk + ε

prior distribution on the regression effects

p(βk ) =
L∑

l=0

ηl p(βk |N (µl , ψl))

η ∼ DIR (e0, . . . ,e0)

µ0 = 0; µl ∼ N (ml0,Ml0) l = 1, . . .L (e.g. L = K )

sparsity is achieved by small e0 (e.g. 0.001)

Helga Wagner Bayesian effect fusion 2017 17 / 22



Sparse finite mixture priors

Finite mixture prior for level effects of covariate economic sector ψ = 100
(left plot) and ψ = 10000 (right plot). One component is centred at zero
(dashed), the others at β̂jk , k = 1, . . . cj .
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Simulation study
Setup similar to the application in order to tune the prior parameters.

N = 4000, covariates: x1 (10 categories), x2 (100 categories).

0 2000 4000 6000 8000 10000

5
10

15
20

iteration

Simulation study, one data set: Trace plot of the number of nonempty groups
during MCMC sampling for variable x2 (left), and visualization of the most
frequent model (right).
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Conclusions

prior distributions for effect fusion
I covariance mixture of multivariate Normals

spike and slab prior distribution on effect contrasts

I finite mixture prior
location mixture of normals with small variance

Bayesian estimation
I feasible by MCMC methods
I "add on" for regression type models with normal priors

pros
I covariance mixture: simple implementation of restricted fusion
I sparse finite mixture prior allows finer resolution

R-package effectFusion
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Future research

extension to generalized linear models (straightforward)
sparse modelling in more general models

I multinomial logit models

P(Y = r) =
exp(x ′βr )

1 +
∑R

s=1 exp(x ′βs)
r = 1, . . . ,R

βrk is the effect of predictor category k on response category r
F sparsity with respect to the predictor βrk = βrk′

F sparsity with respect to the response βrk = βr ′k

I item response models with differential item functioning
I generalized regression models for location, scale and shape

Helga Wagner Bayesian effect fusion 2017 21 / 22



References

Malsiner-Walli, G., Pauger, D. and Wagner, H. (2017).
Effect Fusion Using Model- Based Clustering.
Statistical Modelling, accepted.

Pauger, D. and Wagner, H. (2017).
Bayesian Effect Fusion for Categorical Predictors.
https://arxiv.org/abs/1703.10245.

Pauger, D., Wagner, H., and Malsiner-Walli, G. (2016).
effectFusion: Bayesian Effect Fusion for Categorical
Predictors.
http://www.R-project.org/.

Helga Wagner Bayesian effect fusion 2017 22 / 22


