A Study on Analytical Properties of Bayesian Experimental Design Model based on an Orthonormal System

Yoshifumi Ukita¹ Shunsuke Horii² Toshiyasu Matsushima²

¹Yokohama College of Commerce

²Waseda University

Bayes on the Beach 2017 November 13th -15th 2017

Acknowledgement: JSPS KAKENHI Grant Number JP17K00316

1/25

Outline

Introduction

- Motivation and Objective
- Orthonormal Systems

Experimental Design Models Based on Orthonormal Systems

- Previous model
- Model based on orthonormal systems
- Relation between the two models
- Bayesian Experimental Designs 3
 - Prior and Posterior Probability
 - Posterior variance for orthogonal designs

Conclusion

Introduction

- 2 Experimental Design Models Based on Orthonormal Systems
- 3 Bayesian Experimental Designs
- 4 Conclusion

Motivation and Objective

In signal processing, the model is generally based on orthonormal systems. In such models

- All parameters are independent.
- The fast Fourier Transform (FFT) can calculate the parameters.
- Parameters are complex numbers.

In some previous experimental design models

- Parameters are not necessarily independent.
- Parameters are real numbers.

Motivation

Can we use the idea of orthonormal systems to calculate the posterior variance in Bayesian experimental designs?

Objective

We focus on a subclass of designs, which is limited by orthonormal systems. Then, it's to show we can get the posterior variance directly.

Ukita et al. (YCC)

Bayesian Experimental Design Model

Orthonormal Systems: Example 1

 $\begin{array}{l} F_1,F_2,\ldots,F_n: {\rm Factors}\\ x_i\in\{0,1\}: \mbox{ the level of } F_i\\ {\boldsymbol x}=(x_1,x_2,\ldots,x_n)\in\{0,1\}^n: \mbox{ level combination}\\ \{0,1\}^n: \mbox{ the set of all sequences of } 0,1\mbox{ that is }n\mbox{ long} \end{array}$

Basis functions over the Boolean domain

For each $\boldsymbol{a} = (a_1, a_2, \dots, a_n) \in \{0, 1\}^n$, define the basis function

$$\mathcal{X}_{\boldsymbol{a}}(\boldsymbol{x}) = (-1)^{\boldsymbol{a} \cdot \boldsymbol{x}},$$

where $\boldsymbol{a} \cdot \boldsymbol{x} = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$ is to be performed modulo 2.

Orthonormal Systems

The basis functions form orthonormal systems, that is,

$$\frac{1}{2^n}\sum_{\boldsymbol{x}\in\{0,1\}^n}\mathcal{X}_{\boldsymbol{a}}(\boldsymbol{x})\mathcal{X}_{\boldsymbol{b}}(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{a}=\boldsymbol{b}, \\ 0, & \boldsymbol{a}\neq\boldsymbol{b}. \end{cases}$$

Orthonormal Systems: Example 2

 $\begin{array}{l} F_1,F_2,\ldots,F_n: {\rm Factors} \\ x_i\in\{0,1,2\}: \mbox{ the level of } F_i \\ {\boldsymbol x}=(x_1,x_2,\ldots,x_n)\in\{0,1,2\}^n: \mbox{ level combination} \\ \{0,1,2\}^n: \mbox{ the set of all sequences of } 0,1,2 \mbox{ that is } n \mbox{ long} \end{array}$

Basis functions over $\{0, 1, 2\}^n$ domain ($GF(3)^n$ domain)

For each $oldsymbol{a}=(a_1,a_2,\ldots,a_n)\in\{0,1,2\}^n$, define the basis function

$$\mathcal{X}_{\boldsymbol{a}}(\boldsymbol{x}) = e^{i 2 \pi \boldsymbol{a} \cdot \boldsymbol{x}/3},$$

where $\mathbf{a} \cdot \mathbf{x} = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$ is to be performed over GF(3).

Orthonormal Systems

The basis functions form orthonormal systems, that is,

$$\frac{1}{3^n} \sum_{\boldsymbol{x} \in \{0,1,2\}^n} \mathcal{X}_{\boldsymbol{a}}(\boldsymbol{x}) \mathcal{X}_{\boldsymbol{b}}^*(\boldsymbol{x}) = \begin{cases} 1, & \boldsymbol{a} = \boldsymbol{b} \\ 0, & \boldsymbol{a} \neq \boldsymbol{b} \end{cases}$$

where $\mathcal{X}^*_{\boldsymbol{b}}(\boldsymbol{x})$ is the complex conjugate of $\mathcal{X}_{\boldsymbol{b}}(\boldsymbol{x}).$

Introduction

Experimental Design Models Based on Orthonormal Systems

3 Bayesian Experimental Designs

4 Conclusion

7 / 25

 F_1, F_2 : the factors $x_i \in \{0, 1, 2\}$: the level of F_i $\boldsymbol{x} = (x_1, x_2) \in \{0, 1, 2\}^2$: level combination $t(\boldsymbol{x})$:the response of the experiment with level combination \boldsymbol{x}

Previous model

$$t(\mathbf{x}) = \mu + \alpha_1(x_1) + \alpha_2(x_2) + \beta_{1,2}(x_1, x_2) + \epsilon,$$

where

 μ : the general mean $\alpha_1(x_1)$: the effect of the x_1 level of F_1 $\alpha_2(x_2)$: the effect of the x_2 level of F_2 $\beta_{1,2}(x_1, x_2)$: the interaction of the x_1 level of F_1 and the x_2 level of F_2 ϵ : a zero-mean Gaussian random variable with variance σ^2

Parameters on Previous Model

Then, all parameters are given as follows: $\mu, \alpha_1(0), \alpha_1(1), \alpha_1(2), \alpha_2(0), \alpha_2(1), \alpha_2(2), \beta_{1,2}(0,0), \beta_{1,2}(0,1), \beta_{1,2}(0,2), \beta_{1,2}(1,0), \beta_{1,2}(1,1), \beta_{1,2}(1,2), \beta_{1,2}(2,0), \beta_{1,2}(2,1), \beta_{1,2}(2,2).$

independent parameters vector $oldsymbol{u} \in \mathbb{R}^9$

Under the constraints on parameters, let \boldsymbol{u} denote the independent parameters vector.

$$\boldsymbol{u} = \begin{bmatrix} \mu \\ \alpha_1(0) \\ \alpha_2(0) \\ \alpha_2(1) \\ \beta_{1,2}(0,0) \\ \beta_{1,2}(0,1) \\ \beta_{1,2}(1,0) \\ \beta_{1,2}(1,1) \end{bmatrix},$$

Ukita et al. (YCC)

Model based on orthonormal systems (Ukita et al. 2010)

$$t(\boldsymbol{x}) = \sum_{\boldsymbol{a} \in \{0,1,2\}^2} f_{\boldsymbol{a}} \mathcal{X}_{\boldsymbol{a}}(\boldsymbol{x}) + \epsilon,$$

where $f \boldsymbol{a} : f \boldsymbol{a} \in \mathbb{C}^9$ $\mathcal{X} \boldsymbol{a}(\boldsymbol{x}) = e^{i2\pi \boldsymbol{a} \cdot \boldsymbol{x}/3}$, and ϵ : a zero-mean Gaussian random variable with variance σ^2

Then, the basis fuctions $\{\mathcal{X}_{a} | a \in \{0, 1, 2\}^2\}$ form orthonormal systems.

independent parameters vector $oldsymbol{w} \in \mathbb{C}^9$ (Fourier coefficients vector)
$oldsymbol{w} = egin{bmatrix} f_{00} \ f_{10} \ f_{20} \ f_{01} \ f_{02} \ f_{11} \ f_{12} \ f_{12} \ f_{21} \ f_{22} \ \end{bmatrix}.$

no constraints on parameters \rightarrow all parameters are independent.

Relation between $oldsymbol{u}$ and $oldsymbol{w}$

There is a 9×9 matrix \boldsymbol{M} that satisfies

 $\boldsymbol{u} = \boldsymbol{M}\boldsymbol{w},$

and

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \omega_3 & \omega_3^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \omega_3 & \omega_3^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & \omega_3 & \omega_3^2 & \omega_3 & \omega_3^2 \\ 0 & 0 & 0 & 0 & 0 & \omega_3 & \omega_3 & \omega_3^2 & \omega_3^2 \\ 0 & 0 & 0 & 0 & 0 & \omega_3^2 & 1 & 1 & \omega_3 \end{bmatrix}$$

where $\omega_3 = e^{2\pi i/3}$. M^{-1} also exists and $M^{-1}u = w$.

.

Introduction

2 Experimental Design Models Based on Orthonormal Systems

3 Bayesian Experimental Designs

4 Conclusion

Likelihood Function

- a data set of inputs $m{X} = \{m{x}_1, \dots, m{x}_N\}$ with corresponding target values $t(m{x}_1), \dots, t(m{x}_N)$
- the variables $\{t({m x}_1),\ldots,t({m x}_N)\}$ be a column vector denoted by ${f t}$
- K: the number of pamameters

Likelihood Function

$$p(\mathbf{t}|\boldsymbol{X}, \boldsymbol{u}, \sigma^2) = \mathcal{N}(\mathbf{t}|\boldsymbol{\Phi}\boldsymbol{M}^{-1}\boldsymbol{u}, \sigma^2\boldsymbol{I}).$$

where

$$\mathbf{\Phi} \!=\! \left[egin{array}{ccccc} \mathcal{X}_{a_1}(oldsymbol{x}_1) & \mathcal{X}_{a_2}(oldsymbol{x}_1) & \dots & \mathcal{X}_{a_K}(oldsymbol{x}_1) \ \mathcal{X}_{a_1}(oldsymbol{x}_2) & \mathcal{X}_{a_2}(oldsymbol{x}_2) & \dots & \mathcal{X}_{a_K}(oldsymbol{x}_2) \ dots & dots & \ddots & dots \ \mathcal{X}_{a_1}(oldsymbol{x}_N) & \mathcal{X}_{a_2}(oldsymbol{x}_N) & \dots & \mathcal{X}_{a_K}(oldsymbol{x}_N) \end{array}
ight]$$

Prior and Posterior Probability

Prior Probability

The corresponding conjugate prior is given by a Gaussian distribution

$$p(\boldsymbol{u}) = \mathcal{N}(\boldsymbol{u}|\boldsymbol{m}_0, \boldsymbol{S}_0).$$

Posterior Probability

Then the posterior probability is given by

$$p(\boldsymbol{u}|\boldsymbol{X}, \boldsymbol{t}, \sigma^2) = \mathcal{N}(\boldsymbol{u}|\boldsymbol{m}_N, \boldsymbol{S}_N),$$

where

$$m{m}_N = m{S}_N \left(rac{1}{\sigma^2} (m{M}^{-1})^* m{\Phi}^* m{t} + m{S}_0^{-1} m{m}_0
ight), \ m{S}_N^{-1} = rac{1}{\sigma^2} (m{M}^{-1})^* m{\Phi}^* m{\Phi} m{M}^{-1} + m{S}_0^{-1},$$

15 / 25

and * denotes the conjugate transpose (Hermitian transpose).

Except adding M, the proof is the same as that of Bishop(2006). Ukita et al. (YCC) Bayesian Experimental Design Model Nov. 13th -15th 2017 There are many criteria for the optimal design (Chaloner & Verdinelli 1995). In this linear model,

Bayesian alphabetic optimality

- A-optimality: Minimize trace $\left[\left(rac{1}{\sigma^2}(oldsymbol{M}^{-1})^* oldsymbol{\Phi}^* oldsymbol{\Phi} oldsymbol{M}^{-1} + oldsymbol{S}_0^{-1}
 ight]^{-1}
 ight]$
- D-optimality: Maximize det $\left[\frac{1}{\sigma^2}(M^{-1})^* \Phi^* \Phi M^{-1} + S_0^{-1}\right]$
- et cetera

In this work,

 we focus on a subclass of designs, which is limited by orthonormal systems.

What is the designs which satisfy $\frac{1}{N}\Phi^*\Phi = I$? \rightarrow Orthogonal designs (Orthogonal arrays), Hedayat et al. (1999)

Posterior variance for orthogonal designs

Posterior variance for orthogonal designs

$$oldsymbol{S}_N = \left[\left(rac{N}{\sigma^2} (oldsymbol{M}^{-1})^* oldsymbol{M}^{-1} + oldsymbol{S}_0^{-1}
ight)^{-1}
ight]$$

Advantages

- Easy to calculate the posterior variance
- the well-balanced design
- Not necessary to search for designs

Disadvantages

- Not depend on the prior distribution
 - \rightarrow If the influence of the prior distribution is strong, we should search for the optimal design.
- The number of experiments (inputs) N: restricted to $q^k(q)$: the number of levels of Factor, k: integer)

Introduction

- 2 Experimental Design Models Based on Orthonormal Systems
- 3 Bayesian Experimental Designs

In this work,

- Focused on a subclass of designs, which satisfies that $\frac{1}{N} \Phi^* \Phi = I$ \rightarrow orthogonal designs
- Easy to calculate the posterior variance
- Not depend on the prior distribution \rightarrow If the influence of the prior distribution is strong, we should search for the optimal design.

Further works

- What is the condition satisfies the orthogonal design is optimal?
- Can we apply this kind of projection to other models?
- Can we use the orthogonal model to search for the optimal design?

This work was supported by JSPS KAKENHI Grant Number JP17K00316.

20 / 25

- C.M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.
- K. Chaloner and I. Verdinelli, "Bayesian Experimental Design: A Review," *Statistical Science*, Vol.10, No.3, pp.273-304, 1995.
- A.S. Hedayat, N.J.A. Sloane and J. Stufken, *Orthogonal Arrays: Theory and Applications*, Springer, 1999.
- E.M. Stein, R. Shakarchi, *Fourier Analysis: An Introduction*, Princeton University Press, 2003.
- H. Toutenburg and Shalabh, *Statistical Analysis of Designed Experiments* (Third Edition), Springer, 2009.
- Y. Ukita, T. Saito, T. Matsushima and S. Hirasawa, "A Note on a Sampling Theorem for Functions over GF(q)ⁿ Domain," IEICE Trans. Fundamentals, Vol.E93-A, no.6, pp.1024-1031, June 2010.

Appendix: Orthogonal design 1

In signal processing, the range of frequencies is expressed by the maximum frequency.

In experimental designs, however, it is often necessary to express the range of frequencies in greater detail.

• The range of frequencies can be expressed in greater detail by using a bounded set $A(\subseteq \{0,1\}^n)$ instead of a maximum frequency.

Let \boldsymbol{A} represent all factors that might influence the result of the experiment.

Example

```
n = 3, A = \{000, 100, 010, 001, 110\}.
```

- 100: factor 1
- 010: factor 2
- 001: factor 3
- 110: interaction of factor 1 and factor 2

The other interactions don't influence the result of the experiment.

Ukita et al. (YCC)

Orthogonal design 2

• For
$$a = (a_1, a_2, \dots, a_n)$$
, $a' = (a'_1, a'_2, \dots, a'_n) \in \{0, 1\}^n$, define
 $a + a' = (a_1 + a'_1, a_2 + a'_2, \dots, a_n + a'_n)$, where $+$ is over $GF(2)$.
• For $a \in \{0, 1\}^n$, define $v(a) = \{i | a_i \neq 0, 1 \le i \le n\}$.

• For $A \subseteq \{0,1\}^n$, define

$$H_A = \left[egin{array}{ccccc} h_{1,1} & h_{1,2} & \dots & h_{1,n} \\ h_{2,1} & h_{2,2} & \dots & h_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{k,1} & h_{k,2} & \dots & h_{k,n} \end{array}
ight],$$

where $h_{i,j} \in GF(q)$ and H_A satisfies the following condition: The set $\{\mathbf{h}_{\cdot j} | j \in v(\mathbf{a} + \mathbf{a}')\}$, where $\mathbf{h}_{\cdot j}$ is the *j*-th column of H_A , is linearly independent over GF(q) for any $\mathbf{a}, \mathbf{a}' \in A$.

2 An orthogonal design C for $A \subseteq \{0,1\}^n$ is defined by

$$C = \{ \boldsymbol{x} | \boldsymbol{x} = \boldsymbol{r} H_A, \ \boldsymbol{r} \in GF(q)^k \}.$$

Orthogonal design: Example

Example

 $q=2, n=4, \ A=\{0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001\}.$

By the definition, the sets containing the following must be linearly independent:

the 1st, 2nd, and 3rd columns of H_A ;

the 1st, 2nd, and 4th columns of H_A ; and

the 1st, 3rd and 4th columns of H_A .

Then, the corresponding matrix H_A is given by

$$H_A = \left[\begin{array}{rrrr} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right].$$

2 An orthogonal design C for A is defined by

$$C = \{ \boldsymbol{x} | \boldsymbol{x} = \boldsymbol{r} H_A, \ \boldsymbol{r} \in \{0, 1\}^3 \}$$

= $\{0000, 1000, 0101, 1101, 0011, 1011, 0110, 1110 \}.$

Example: Posterior variance

Example: Posterior variance (n=2, q=3, N=9)

$$m{S}_9 = \left[\left(rac{9}{\sigma^2} (m{M}^{-1})^* m{M}^{-1} + m{S}_0^{-1}
ight)^{-1}
ight],$$

where

$$(\boldsymbol{M}^{-1})^* \boldsymbol{M}^{-1} = \frac{1}{9} \begin{bmatrix} 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 4 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 4 \end{bmatrix}$$

Ukita et al. (YCC)