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Motivation and Objective

In signal processing, the model is generally based on orthonormal
systems. In such models

All parameters are independent.

The fast Fourier Transform (FFT) can calculate the parameters.

Parameters are complex numbers.

In some previous experimental design models

Parameters are not necessarily independent.

Parameters are real numbers.
.
Motivation
..

......

Can we use the idea of orthonormal systems to calculate the posterior
variance in Bayesian experimental designs?

.
Objective
..

......

We focus on a subclass of designs, which is limited by orthonormal
systems. Then, it’s to show we can get the posterior variance directly.
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Orthonormal Systems: Example 1

F1, F2, . . . , Fn：Factors
xi ∈ {0, 1}: the level of Fi

x = (x1, x2, . . . , xn) ∈ {0, 1}n: level combination
{0, 1}n: the set of all sequences of 0, 1 that is n long
.
Basis functions over the Boolean domain
..

......

For each a = (a1, a2, . . . , an) ∈ {0, 1}n, define the basis function

Xa(x) = (−1)a·x,

where a · x = a1x1 + a2x2 + · · ·+ anxn is to be performed modulo 2.

.
Orthonormal Systems
..

......

The basis functions form orthonormal systems, that is,

1

2n

∑
x∈{0,1}n

Xa(x)Xb(x) =
{

1, a = b,
0, a ̸= b.
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Orthonormal Systems: Example 2

F1, F2, . . . , Fn：Factors
xi ∈ {0, 1, 2}: the level of Fi

x = (x1, x2, . . . , xn) ∈ {0, 1, 2}n: level combination
{0, 1, 2}n: the set of all sequences of 0, 1, 2 that is n long
.
Basis functions over {0, 1, 2}n domain (GF (3)n domain)
..

......

For each a = (a1, a2, . . . , an) ∈ {0, 1, 2}n, define the basis function

Xa(x) = ei2πa·x/3,

where a · x = a1x1 + a2x2 + · · ·+ anxn is to be performed over GF (3).

.
Orthonormal Systems
..

......

The basis functions form orthonormal systems, that is,

1

3n

∑
x∈{0,1,2}n

Xa(x)X ∗
b(x) =

{
1, a = b,
0, a ̸= b,

where X ∗
b(x) is the complex conjugate of Xb(x).
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Example: Model of Two-factor Experiments

F1, F2：the factors
xi ∈ {0, 1, 2}: the level of Fi

x = (x1, x2) ∈ {0, 1, 2}2: level combination
t(x):the response of the experiment with level combination x

.
Previous model
..

......

t(x) = µ+ α1(x1) + α2(x2) + β1,2(x1, x2) + ϵ,

where
µ: the general mean
α1(x1): the effect of the x1 level of F1

α2(x2): the effect of the x2 level of F2

β1,2(x1, x2): the interaction of the x1 level of F1 and the x2 level of F2

ϵ: a zero-mean Gaussian random variable with variance σ2
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Parameters on Previous Model

Then, all parameters are given as follows:
µ, α1(0), α1(1), α1(2), α2(0), α2(1), α2(2), β1,2(0, 0), β1,2(0, 1), β1,2(0, 2),
β1,2(1, 0), β1,2(1, 1), β1,2(1, 2), β1,2(2, 0), β1,2(2, 1), β1,2(2, 2).

.
independent parameters vector u ∈ R9

..

......

Under the constraints on parameters, let u denote the independent
parameters vector.

u =



µ
α1(0)
α1(1)
α2(0)
α2(1)

β1,2(0, 0)
β1,2(0, 1)
β1,2(1, 0)
β1,2(1, 1)


,
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Model based on orthonormal systems

.
Model based on orthonormal systems (Ukita et al. 2010)
..

......

t(x) =
∑

a∈{0,1,2}2
faXa(x) + ϵ,

where
fa : fa ∈ C9

Xa(x) = ei2πa·x/3, and
ϵ: a zero-mean Gaussian random variable with variance σ2

Then, the basis fuctions {Xa|a∈{0, 1, 2}2} form orthonormal systems.
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Parameters (Model based on orthonormal systems)

.
independent parameters vector w ∈ C9 (Fourier coefficients vector)
..

......

w =



f00
f10
f20
f01
f02
f11
f12
f21
f22


.

no constraints on parameters → all parameters are independent.
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Relation between u and w

There is a 9× 9 matrix M that satisfies

u = Mw,

and

M =



1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 ω3 ω2

3 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 ω3 ω2

3 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 ω3 ω2

3 ω3 ω2
3

0 0 0 0 0 ω3 ω3 ω2
3 ω2

3

0 0 0 0 0 ω2
3 1 1 ω3


.

where ω3 = e2πi/3. M−1 also exists and M−1u = w.

Ukita et al. (YCC) Bayesian Experimental Design Model Nov. 13th -15th 2017 12 / 25



...1 Introduction

...2 Experimental Design Models Based on Orthonormal Systems

...3 Bayesian Experimental Designs

...4 Conclusion

Ukita et al. (YCC) Bayesian Experimental Design Model Nov. 13th -15th 2017 13 / 25



Likelihood Function

a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t(x1), . . . , t(xN )

the variables {t(x1), . . . , t(xN )} be a column vector denoted by t

K: the number of pamameters

.
Likelihood Function
..

......

p(t|X,u, σ2) = N (t|ΦM−1u, σ2I).

where

Φ=


Xa1(x1) Xa2(x1) . . . XaK (x1)
Xa1(x2) Xa2(x2) . . . XaK (x2)

...
...

. . .
...

Xa1(xN ) Xa2(xN ) . . . XaK (xN )

 .
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Prior and Posterior Probability

.
Prior Probability
..

......

The corresponding conjugate prior is given by a Gaussian distribution

p(u) = N (u|m0,S0).

.
Posterior Probability
..

......

Then the posterior probability is given by

p(u|X, t, σ2) = N (u|mN ,SN ),
where

mN = SN

(
1

σ2
(M−1)∗Φ∗t+ S−1

0 m0

)
,

S−1
N =

1

σ2
(M−1)∗Φ∗ΦM−1 + S−1

0 ,

and ∗ denotes the conjugate transpose (Hermitian transpose).

Except adding M , the proof is the same as that of Bishop(2006).
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Bayesian experimental designs

There are many criteria for the optimal design (Chaloner & Verdinelli
1995). In this linear model,
.
Bayesian alphabetic optimality
..

......

A-optimality: Minimize trace
[(

1
σ2 (M

−1)∗Φ∗ΦM−1 + S−1
0

)−1
]

D-optimality: Maximize det
[

1
σ2 (M

−1)∗Φ∗ΦM−1 + S−1
0

]
et cetera

In this work,

we focus on a subclass of designs, which is limited by orthonormal
systems.

What is the designs which satisfy 1
NΦ∗Φ = I?

→ Orthogonal designs (Orthogonal arrays), Hedayat et al. (1999)
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Posterior variance for orthogonal designs

.
Posterior variance for orthogonal designs
..

......

SN =

[(
N

σ2
(M−1)∗M−1 + S−1

0

)−1
]
.

Advantages

Easy to calculate the posterior variance

the well-balanced design

Not necessary to search for designs

Disadvantages

Not depend on the prior distribution
→ If the influence of the prior distribution is strong, we should
search for the optimal design.

The number of experiments (inputs) N : restricted to qk(q: the
number of levels of Factor, k: integer)
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Conclusion

In this work,

Focused on a subclass of designs, which satisfies that 1
NΦ∗Φ = I

→ orthogonal designs

Easy to calculate the posterior variance

Not depend on the prior distribution
→ If the influence of the prior distribution is strong, we should
search for the optimal design.

Further works

What is the condition satisfies the orthogonal design is optimal?

Can we apply this kind of projection to other models?

Can we use the orthogonal model to search for the optimal design?
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Appendix: Orthogonal design 1

In signal processing, the range of frequencies is expressed by the
maximum frequency.
In experimental designs, however, it is often necessary to express the
range of frequencies in greater detail.

The range of frequencies can be expressed in greater detail by using
a bounded set A(⊆ {0, 1}n) instead of a maximum frequency.

Let A represent all factors that might influence the result of the
experiment.
.
Example
..

......

n = 3, A = {000, 100, 010, 001, 110}.
100: factor 1
010: factor 2
001: factor 3
110: interaction of factor 1 and factor 2

The other interactions don’t influence the result of the experiment.
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Orthogonal design 2

For a = (a1, a2, . . . , an), a
′ = (a′1, a

′
2, . . . , a

′
n) ∈ {0, 1}n, define

a+ a′ = (a1 + a′1, a2 + a′2, . . . , an + a′n), where + is over GF (2).

For a ∈ {0, 1}n, define v(a) = {i|ai ̸= 0, 1 ≤ i ≤ n}.
...1 For A ⊆ {0, 1}n, define

HA =


h1,1 h1,2 . . . h1,n
h2,1 h2,2 . . . h2,n
...

...
. . .

...
hk,1 hk,2 . . . hk,n

 ,

where hi,j ∈ GF (q) and HA satisfies the following condition:
The set {h·j |j ∈ v(a+ a′)}, where h·j is the j-th column of HA, is
linearly independent over GF (q) for any a,a′ ∈ A.

...2 An orthogonal design C for A ⊆ {0, 1}n is defined by

C = {x|x = rHA, r ∈ GF (q)k}.
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Orthogonal design: Example
.
Example
..
......q = 2, n = 4, A = {0000, 1000, 0100, 0010, 0001, 1100, 1010, 1001}.

...1 By the definition, the sets containing the following must be linearly
independent:
the 1st, 2nd, and 3rd columns of HA;
the 1st, 2nd, and 4th columns of HA; and
the 1st, 3rd and 4th columns of HA.
Then, the corresponding matrix HA is given by

HA =

 0 0 1 1
0 1 0 1
1 0 0 0

 .

...2 An orthogonal design C for A is defined by

C = {x|x = rHA, r ∈ {0, 1}3}
= {0000, 1000, 0101, 1101, 0011, 1011, 0110, 1110}.
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Example: Posterior variance

.
Example: Posterior variance (n=2, q=3, N=9)
..

......

S9 =

[(
9

σ2
(M−1)∗M−1 + S−1

0

)−1
]
,

where

(M−1)∗M−1 =
1

9



9 0 0 0 0 0 0 0 0
0 6 3 0 0 0 0 0 0
0 3 6 0 0 0 0 0 0
0 0 0 6 3 0 0 0 0
0 0 0 3 6 0 0 0 0
0 0 0 0 0 4 2 2 1
0 0 0 0 0 2 4 1 2
0 0 0 0 0 2 1 4 2
0 0 0 0 0 1 2 2 4


.
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