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Univariate extremes – block maxima

Central limit theorem:

I Suppose X1,X2, . . . ∼ F (µ, σ2) (i.i.d.)

I X̄n = 1
n (X1 + . . .+ Xn)

I Then as n→∞ the distribution of X̄n is N(µ, σ
2

n )

I Useful for modelling means of processes

I Asymptotic distribution depends on µ and σ2 but not on form of F .

Distribution of block maxima

I Suppose X1,X2, . . . ∼ F (i.i.d.)

I Mn = max{X1 + . . .+ Xn}
I What is the distribution of Mn?

• For finite n?
• For n→∞?

I Useful for modelling extreme of processes

4/95



Univariate extremes – block maxima

What is the distribution of Mn – for finite n? (1st year exercise!)

F (Mn) = Pr(Mn ≤ x) = Pr(max{X1 + . . .+ Xn} ≤ x)

= Pr(X1 ≤ x , . . . ,Xn ≤ x)

= Pr(X1 ≤ x) . . .Pr(Xn ≤ x)

= Pr(X ≤ x)n = F n(x).

I So if we know F , we can model Mn.

I But what if F is unknown?

I For finite n we are stuck.

I But CLT works for unknown F as n→∞
I Can we do something similar for Mn as n→∞? (Answer = yes!)
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Univariate extremes – block maxima

I Set x0 = sup{x : F (x) < 1}
I Then Pr(Mn ≤ x0) = F n(x0)→ 0 as n→∞
I I.e. distribution of Mn degenerates to point mass at x0
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Univariate extremes – block maxima

Central Limit Theorem

I Consider limiting distribution of

X̄ − bn
an

→ N(0, 1) (Xi ∼ F (µ, σ2))

I Limit distribution exists if: bn = µ and an = σ/
√
n.

Extremes

I Consider limiting distribution of rescaled sample maxima

M∗n =
Mn − bn

an
→ ? as n→∞.

I i.e. require non-degenerate distribution G and sequences an > 0, bn
such that

Pr

(
Mn − bn

an
≤ x

)
= Pr(Mn ≤ anx + bn) = F n(anx + bn)→ G (x)

converges in distribution to G as n→∞.

I If it converges then F is in the domain of attraction of G ,
F ∈ D(G ).
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Univariate extremes – block maxima

Extremal Types Theorem

If sequences an > 0 and bn exist such that

Pr

(
Mn − bn

an
≤ z

)
→ G (z) as n→∞

where G is a non-degenerate distribution function, then G belongs to one
of the following families:

1. Gumbel:

G (z) = exp{− exp[−(
z − b

a
)]} −∞ ≤ z ≤ ∞

2. Fréchet:

G (z) =

{
0 z ≤ b
exp{−( z−b

a )−α} z > b

3. Weibull:

G (z) =

{
exp{−[−( z−b

a )α]} z < b
1 z ≥ b

The precise limiting distribution depends on tail behaviour of F . 8/95



Univariate extremes – block maxima

Generalised extreme value (GEV) distribution

G (z) = exp

{
−
[

1 + ξ

(
z − µ
σ

)]−1/ξ

+

}

where (a)+ = max(0, a).

I µ, σ, ξ are location, scale, shape parameters

I ξ determines sub-family:

• ξ → 0: Gumbel
• ξ > 0: Fréchet
• ξ < 0: Weibull

GEV is practically useful for modelling (see later).
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Univariate extremes – block maxima

Outline proof of Extremal Types Theorem is fairly straightforward ⇒
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Univariate extremes – block maxima

Definition: Max-stability

A distribution G is max-stable if, for n = 2, 3, . . ., there are constants
αn > 0 and βn such that

G n(αnz + βn) = G (z).

I I.e. The maximum of samples drawn from a max-stable distribution
come from the same distribution, but with changed location and
scale parameters.

I Compare: mean-stable distributions (e.g. Gaussian).

Theorem
A distribution is max-stable iff it is a GEV distribution.

I Easy to check that Gumbel, Fréchet, Weibull are all max-stable.

I Converse is harder (but true).
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Univariate extremes – block maxima

Outline Proof of Extremal Types Theorem:

I Suppose that for large n

Pr

(
Mn − bn

an
≤ z

)
≈ G (z).

I Hence for any integer k ∈ {1, 2, . . .}, since nk is large

Pr

(
Mnk − bnk

ank
≤ z

)
≈ G (z). (1)

I Mnk is max of k variables, each having the same distribution as Mn.

I

Pr

(
Mnk − bn

an
≤ z

)
=

[
Pr

(
Mn − bn

an
≤ z

)]k
. (2)

I From (1) and (2) respectively we have

Pr(Mnk ≤ z) ≈ G

(
z − bnk
ank

)
and Pr(Mnk ≤ z) ≈ G k

(
z − bn
an

)
.

I G and G k are identical, apart from location/scale parameters.
Hence G is max-stable, and therefore GEV. 12/95



Univariate extremes – block maxima

Simple examples:

#1 Exponential(1): F (x) = 1− e−x for x > 0.

I Let an = 1 and bn = log n.

I Then

Pr

(
Mn − bn

an
≤ z

)
= F n(z + log n)

= (1− e−(z+log n))n

= (1− e−z/n)n

→ exp(−e−z) as n→∞.

which is Gumbel, with ξ = 0 in the GEV family.
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Univariate extremes – block maxima
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Univariate extremes – block maxima

Simple examples:

#2 Fréchet(1): F (x) = exp(−1/x) for x > 0.

I Let an = n and bn = 0.

I Then

Pr

(
Mn − bn

an
≤ z

)
= F n(nz)

= [exp(−1/(nz))]n

= exp(−1/z) for any n.

which is again standard Fréchet (ξ = 1 in the GEV family).

Clearly demonstrates the max-stable property of Fréchet
distributions!
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Univariate extremes – block maxima
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I Spot the heavy tail!
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Univariate extremes – block maxima

Simple examples:

#3 Uniform(0,1): F (x) = x for 0 ≤ x ≤ 1.

I Let an = 1/n and bn = 1.

I Hence (Mn − bn)/an ≤ 0

I Then

Pr

(
Mn − bn

an
≤ z

)
= F n(z/n + 1) (for z < 0)

= (1 +
z

n
)n

→ ez as n→∞.

which is Weibull (finite upper end point), with ξ = −1 in the GEV
family.
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Univariate extremes – block maxima
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Univariate extremes – block maxima

Comments:

I Choice of an and bn is not unique.

I Different choices (that lead to non-degenerate limits) are always in
the GEV family with the same ξ parameter (it is just a
location/scale shift).

I But with different location and scale parameters.

New Questions:

I How do we know the domain of attraction for a given F?

I How can we find an and bn?

Answers:

I Could fill books on this (and people have!)

I I’ll give outline sketch for a particular simple class.
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Univariate extremes – block maxima

I Distribution of sample maxima depends on tail behaviour of F .

I Consider a particular form of tail behaviour:

Von Mises function
A distribution F with right end point x0 is a Von Mises function if there
exists a z0 < x0 such that

1− F (x) = c exp

{
−
∫ x

z0

1

f (u)
du

}
for x > z0

with c > 0. Here f (u) > 0 is an auxiliary function.

Result:

If F is a Von Mises function, then F ∈ D(Gumbel).

Also: an = f (bn) and 1− F (bn) = 1/n.
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Univariate extremes – block maxima

Helpful result

Suppose F is absolutely continuous with negative second derivative F ′′

for all x ∈ (z0, x0). Then if

lim
x→x0

F ′′(x)(1− F (x))

(F ′(x))2
= −1

then F is a Von Mises function, and f (x) = (1− F (x))/F ′(x).

This means that if the above holds:

I we know the limit distribution is Gumbel

I we know how to calculate the normalising constants.
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Univariate extremes – block maxima

Example: F (x) = Φ(x) (Gaussian)

I F ′(x) = φ(x)

I F ′′(x) = −xφ(x)

I

lim
x→∞

(1− F (x))F ′′(x)

(F ′(x))2
= lim

x→∞

−x−1φ(x)xφ(x)

(φ(x))2
= −1

and so F is Von Mises and F ∈ D(Gumbel).

I

f (x) =
1− F (x)

F ′(x)
=

1− Φ(x)

φ(x)
∼ x−1φ(x)

φ(x)
=

1

x

for large x (Mill’s ratio).

I Finally (and after a bit of work ...)

• an = (2 log n)−1/2

• bn = (2 log n)1/2 − 1/2(log log n + log 4π)/(2 log n)1/2
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Univariate extremes – block maxima
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Normal convergence to Gumbel is quite slow.
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Univariate extremes – block maxima
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I Annual (daily) maximum sea-levels at Port Pirie (north of
Adelaide), 1923-1987.

I Sea defences: what is the maximum (daily) sea-level we can expect
to see in the next 100 years? 1000 years?

I Empirically Pr(X ≥ 4.69) = 1/65. Need EVT to go beyond this.
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Univariate extremes – block maxima
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I (asymptotic) GEV fit seems reasonable.

I For predictive inference, use return levels.
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Univariate extremes – block maxima

Return levels

I What process level can we expect to be exceeded, on average, once
every e.g. 100 years? (E.g. 1 in 100 year storm.)

G (z) = exp

{
−
[

1 + ξ

(
z − µ
σ

)]−1/ξ

+

}

Procedure

I Estimate quantile zp associated with tail probability p

G (zp) = 1− p.

I E.g. For 100-year storm, p = 0.01, and

zp =

{
µ− σ

ξ [1− {− log(1− p)}−ξ] for ξ 6= 0

µ− σ log{− log(1− p)} for ξ = 0

• zp is the return level associated with return period 1/p.
• E.g. Process can be expected to exceed zp, on average, once

every 1/p years.
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Univariate extremes – block maxima
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I E.g. 100-year return level is ≈ 4.65m.

I Return period of an ≈ 5m event is 1000 years.

I Note: approx. 95% CI for ξ is (-0.242, 0.142) suggesting ξ = 0 is a
possibility.

I Would accept likelihood-ratio test for reducing GEV → Gumbel
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Univariate extremes – block maxima
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I Slightly improved fit – Gumbel seems a good choice.

I However: only one parameter saved – is this a good thing to do in
general?

I Cautionary tale follows . . .
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Univariate extremes – block maxima

I 50 years of annual rainfall maxima at Maiquetia International
Airport, Venezuela

I December 1999 storm way off the charts (extensive damage)

I What is return period of this magnitude of storm (without observing
it)? I.e. should we have been prepared for it?

I All statistical tests recommend reducing GEV → Gumbel.
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Univariate extremes – block maxima

I Return period of Dec 1999 storm (410.4mm)

• GEV: 4280 year event
• Gumbel: 17.6 million year event (in ∼50 years of data!)

I Do we really believe this?
Perhaps just fit GEV, unless 100% certain of Gumbel limit.
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Univariate extremes – threshold models
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I Daily rainfall SW England 1914–1962.

I 17531 daily data points, 49 annual maxima.

I Analysis of annual maxima only seems wasteful.

I Alternative characterisation of extreme = above a high threshold
(e.g. u = 30 gives 152 data points here).
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Univariate extremes – threshold models

Theorem

Let X1,X2, . . . ∼ F (i.i.d) and Mn = max{X1, . . . ,Xn}, and that

Pr(Mn ≤ z) ≈ G (z |µ, σ, ξ) as before.

Then, for large u, the distribution function of X − u|X > u is
approximately

H(z) = 1−
(

1 +
ξz

σ̃

)−1/ξ

+

where σ̃ = σ + ξ(u − µ).

I H(z) is in the Generalised Pareto Distribution (GPD) family.

I Precisely: H(z) is the limit distribution of X − u|X > u as u →∞.

I GPD parameters are function of GEV parameters.

I Increasing u analogous to increasing n for block maxima.

Take away: If block maxima result holds, can model extreme tail by GPD.
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Univariate extremes – threshold models

Outline justification:

I If GEV limit holds then for large n

F n(z) ≈ exp

{
−
[

1 + ξ

(
z − µ
σ

)]−1/ξ
}

for some µ, σ, ξ.

I Then

n log F (x) ≈ −
[

1 + ξ

(
z − µ
σ

)]−1/ξ

.

I For large z , a Taylor expansion gives

log F (z) ≈ −[1− F (z)].

I Substituting gives

1− F (u) ≈ 1

n

[
1 + ξ

(
u − µ
σ

)]−1/ξ

for large u.
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Univariate extremes – threshold models

I For large u and y > 0 we then have

1− F (u + y) ≈ 1

n

[
1 + ξ

(
u + y − µ

σ

)]−1/ξ

for large u.

I Immediately we then have

Pr(X > u + y |X > u) =
Pr(X > u + y ,X > u)

Pr(X > u)
(y > 0)

≈ n−1[1 + ξ(u + y − u)/σ]−1/ξ

n−1[1 + ξ(u − µ)/σ]−1/ξ

=

[
1 +

ξ(u + y − µ)/σ

1 + ξ(u − µ)/σ

]−1/ξ

=

[
1 +

ξy

σ̃

]−1/ξ

where σ̃ = σ + ξ(u − µ).
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Univariate extremes – threshold models

Simple examples (redux):

#1 Exponential(1): F (x) = 1− e−x for x > 0.

I By direct calculation

1− F (u + y)

1− F (u)
=

e−(u+y)

e−u
= e−y for y > 0.

I ⇒ threshold exceedances are GPD(σ̃ = 0, ξ = 0) (=exponential).

I Exact result for all u > 0.
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Univariate extremes – threshold models

Simple examples (redux):

#2 Fréchet(1): F (x) = exp−1/x for x > 0.

I
1− F (u + y)

1− F (u)
=

1− exp{−(u + y)−1}
1− exp(−u−1)

∼
(

1 +
y

u

)−1

as u →∞.

I ⇒ threshold exceedances are GPD(σ̃ = u, ξ = 1).
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Univariate extremes – threshold models

Simple examples (redux):

#3 Uniform(0,1): F (x) = x for 0 ≤ x ≤ 1.

I
1− F (u + y)

1− F (u)
=

1− (u + y)

1− u
= 1− y

1− u

for 0 ≤ y ≤ 1− u.

I ⇒ threshold exceedances are GPD(σ̃ = 1− u, ξ = −1).
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Univariate extremes – threshold models

Threshold choice

I The GPD is the limiting model as u →∞
I In practice two contrasting needs:

• Need to identify large u so that tail of F ∼ GPD.
– gives unbiased, but imprecise parameter estimates.

• Need u low as possible to maximise data exceeding threshold.
– too low gives precise but biased parameter estimates

• Ideally, lowest possible u so that GPD limit still approximately
holds.

I Two simple methods (many complex methods!):

• 1) Mean residual life plot
• 2) Parameter estimates vs threshold plot
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Univariate extremes – threshold models

1) Mean-residual life plots:

I If Y ∼ GPD(σ, ξ) then

E[Y ] =
σ

1− ξ for ξ < 1.

I For threshold modelling

E[X − u0|X > u0] =
σu0

1− ξ for ξ < 1.

I Now if u0 is a valid threshold, then any u > u0 is also valid.

I Hence (using the original GPD as F and threshold modelling this):

E[X − u|X > u] =
σu

1− ξ =
σu0 + ξu

1− ξ .

I So for u > u0 E[X − u|X > u] is linear in u.

I So plot

u against
1

nu

nu∑

i=1

(x(i) − u),

for u < xmax . Choose smallest u above which plot is linear.
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Univariate extremes – threshold models
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I SW England rainfall data

I MRL plot linear after u = 30 (6 datapoints above u = 60 so ignore)

I Other values also seem credible.
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Univariate extremes – threshold models
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I 2) Parameter estimates versus threshold plot

I Nothing much happening here, but no reason to overrule MRL plot
(u = 30)
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Univariate extremes – threshold models

Calculation of Return Levels needs a small modification

I If X − u ∼ GPD(σ, ξ) then for x > u

Pr(X > x |X > u) =

[
1 + ξ

(
x − u

σ

)]−1/ξ

.

I It follows that

Pr(X > x) = Pr(X > x |X > u)Pr(X > u) = ζu

[
1 + ξ

(
x − u

σ

)]−1/ξ

.

as x > u, where ζu = Pr(X > u).

I Hence, the level xm that is exceeded on average once every m
observations is the solution of

ζu

[
1 + ξ

(
x − u

σ

)]−1/ξ

=
1

m
.
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Univariate extremes – threshold models

I This gives the m-observation return level as

xm = u +
σ

ξ
[(mζu)ξ − 1].

I To get this on a N-year return level scale, write

m = N × ny

where ny is the number of observations in 1 year (extreme or
otherwise).

I Finally, need an estimate of ζu:

ζ̂u = proportion of observations above u.

45/95



Univariate extremes – threshold models
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I Semi-ok fit in the tails (u = 30)

I Return levels on annual scale (with ny = 365.25, ζ̂u = 152/17531)
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Talk Outline

1. Motivation

2. Univariate extremes

• Block maxima results
• Block maxima practice
• Threshold models

3. Multivariate extremes

4. Spatial extremes

5. Extras

• Stereological extremes (ABC)
• Big data extremes (SDA)
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Multivariate extremes

compute the exceedance probability
of floods in the lower reaches of the
catchment that are produced by a
combination of extreme rainfall falling
on the catchment, and storm tides
determining the water level at the
catchment outlet. The catchment
(bounded by red lines), the Fort Deni-
son tide gauge (square symbol), and
21 daily rainfall gauges (black dots)
are presented in Figure 5. Following
Zheng et al. [2013], daily rainfall at
each gauge was paired with the daily
maximum storm surge over the same
period to enable dependence analysis.
The respective dependence parame-
ters between the 21 daily rainfall
gauges and the storm tide gauge
were similar, and therefore, we
selected the longest overlapping rain-
fall record (Sydney Observatory Hill,
approximately 92 years) for illustra-
tion. The resultant 33,503 paired data
points can be seen as black open
circles in Figure 6 (left plot).

5.1. Determination of Dependence Strength
The three statistical methods described in section 3 are used to fit the paired rainfall-surge data. To fit the
marginal threshold exceedances to the GPD, it is necessary to remove the temporal clustering and ensure
the stationarity of the extremes. Ferro and Segers [2003] developed an extremal index that measures the
reciprocal mean cluster size of extremes to determine the independent extreme events, and Chavez-Demou-
lin and Davison [2012] used covariate regression to account for the nonstationarity. An analysis on our data
using these approaches shows no evidence of temporal dependence or nonstationarity.

We also used diagnostic plots, Chi (v) and Chibar ð!vÞ, to examine the asymptotic behavior of this data
set [Coles et al., 1999], and results showed strong evidence of asymptotic dependence. Similar observa-
tions were made for other daily rainfall gauges in Figure 5 paired with the Fort Denison tide gauge.
This supports the use of asymptotically dependent models for the rainfall-surge data sets considered in
this study. An extensive analysis on the asymptotic properties has been performed in Zheng et al.
[2013].

Figure 6. Data and fitted model density plots for the (left) rainfall-surge data set and other two independent data sets. Red ‘‘plus’’ symbols and blue solid curves indicate the joint
exceedances and joint density, respectively.

Figure 5. The Hawkesbury-Nepean catchment near Sydney. The catchment is
bounded by red lines. The Fort Denison tide gauge and daily rainfall gauges are,
respectively, represented by the yellow square and the black dots. The red triangle
shows the river cross section at Spencer.

Water Resources Research 10.1002/2013WR014616

ZHENG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2062

I Interest in extremes of more than one variable

I Daily rainfall vs. daily storm surge in Hawkesbury-Nepean
catchment (near Sydney)

I Interest in modelling when both (or one) measurement is extreme.

I There are 4 ways to model multivariate extremes:

• block maxima
• threshold models
• point processes
• conditional modelling (× – not discussed today)
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Multivariate extremes

Method #1: Block maxima

Similar to univariate case. If sequences and > 0, bnd , d = 1, . . . ,D, exist
such that there is a non-degenerate limit

lim
n→∞

Pr

(
Mn1 − bn1

an1
≤ z1, . . . ,

MnD − bnD
anD

≤ zD

)
→ G (z1, . . . , zD)

then G is a multivariate extreme value distribution (MEVD), and is
max-stable.

I Any univariate margin is GEV

I Fact: domains of attraction are preserved under monotone
transformations of margins (Resnick, 1987)

I Common to represent MEVD’s with unit Fréchet margins Zd
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Multivariate extremes

Method #1: Block maxima

Under unit Fréchet margins, the joint distribution has the form

Pr(Z1 ≤ z1, . . . ,ZD ≤ zD) = exp(−V (z1, . . . , zD))

where the exponent measure V takes the form

V (z1, . . . , zD) = D

∫

∆D

max
d=1,...,D

wd

zd
H(dw)

where

I ∆D = {w ∈ RD
+ : w1 + . . .+ wD = 1} is the D − 1 dimensional

simplex

I angular/spectral measure H(w) on ∆D determines the dependence
structure

I satisfies moment conditions
∫

∆D
wdH(w) = 1/D
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Multivariate extremes

Method #1: Block maxima
In principle easy to build parametric models for G

I Assume parametric form for H(w)
– must satisfy moment constraints
– not easy to find closed form for G

I Obtain the density ∂G/∂z1, . . . , zD to permit inference
– many, many terms due to partial differentiation.
E.g. differentiating exp(−V ) gives

∂

∂z1
exp(−V ) = −V1 exp(−V )

∂2

∂z1z2
exp(−V ) = (V1V2 − V12) exp(−V )

∂3

∂z1z2z3
exp(−V ) = (−V1V2V3 + V12V3 + V13V2 + V23V1 − V123) exp(−V )

where Vi is partial derivaive with respect to i .

Inference viable for low D only.
Some parametric families have been worked out. Hard in general.
No single parametric form for G (unlike univariate GEV). 51/95



Multivariate extremes

Some models (bivariate):

I Logistic model

G (x , y) = exp
{
−
(
x−1/α + y−1/α

)α}
x > 0, y > 0

which arises (though not obviously!!) through

h(w) =
1

2
(α−1 − 1){w(1− w)}−1−1/α{w−1/α + (1 + w)−1/α}α−2

on 0 ≤ w ≤ 1.

• α→ 1 gives complete independence

G (x , y) = exp
{
−
(
x−1 + y−1

)}
.

• Smaller α→ 0 is increasing dependence
• One parameter for D-dimensional dependence.
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Multivariate extremes

Some other models (bivariate):

I negative logistic

I bilogistic

I negative bilogistic

I dirichlet (multivariate)

Note: There are not many parametric families for which h(w) can be
defined, which satisfies the moment conditions, and for which G has
closed form . . .
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Multivariate extremes
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I Annual sea level maxima in Dover & Harwich, 1912–1992.

I Missing data: Dover (9), Harwich (30), both (3).

I Outlier = large storm passing over SE Britain on 1st February 1953.

I Model linear trend in µ in both margins.

I α̂ = 0.70283 (0.09551) so some dependence.
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Multivariate extremes
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I Annual maxima is very wasteful of data.

I Highly likely (Mn1, . . . ,MnD) is not an observed event!

I Other approaches are more common.
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Multivariate extremes

then all data points with X> uYjX (green open circles) are defined as extremes when modeling the distribu-
tion of YjX. The extremes when modeling the distribution of XjY are defined analogously, with the horizon-
tal green line representing uXjY and the green ‘‘plus’’ symbols indicating extremes. The extreme events in
the upper quadrant (green circles filled with plus symbols) are considered by both YjX and XjY when using
the conditional method (for details see section 3.3).

2.2. Overview of Bivariate Extreme Value Concepts
For simplicity, the bivariate margins of (X, Y) are typically assumed to follow a standard Fr!echet distribution,
i.e., FðzÞ5exp ð21=zÞ; z > 0, where z 5 x or y. However, this implies no loss of generality of the characteriza-
tion of the bivariate extreme value distribution, since any other marginal distributions, whose extremal
properties are determined by the univariate characterizations (GEV or GPD), can always be transformed into
the standard Fr!echet form [Coles and Tawn, 1994].

In bivariate extreme value theory, the paired maxima are normalized to M#n5ðM#x;n; M#y;nÞ, where M#x;n5
max i51;::::;nfXig=n and M#y;n5 max i51;::::;nfYig=n, in order to avoid degeneracy of the limiting distribution as
n becomes large. Then if the limiting distribution of M#n exists, it has the form of:

Pr fM#x;n $ x; M#y;n $ yg ! Gðx; yÞ (3)

as n!1, where G is a nondegenerate distribution function (i.e., Gðx; yÞ < 1 for any x and y) that possesses
the max-stability property, and satisfies certain homogeneity and mean constraints [Coles, 2001].

A number of parametric models have been developed based on the characterization of bivariate extreme
value distributions in equation (3) [Kotz and Nadarajah, 2000], such as the logistic model, the negative logis-
tic model, the bilogistic model, the negative bilogistic model, and the Dirichet model (details of these mod-
els are given in Appendix A). Among them, the logistic model is frequently used due to its simple structure
and low number of parameters [Tawn, 1988]:

Gðx; yÞ5exp f2ðx21=a1y21=aÞag 0 < a $ 1; x > 0; y > 0 (4)

where x and y are margins of the bivariate vector following the standard Fr!echet distribution. The parame-
ter a is used to quantify the dependence strength with a! 0 and a 5 1 representing complete depend-
ence and independence, respectively. The parameter a measures the dependence between two random
variables at extreme levels, and differs from the correlation coefficient q which measures the overall linear
association between the full distributions of the two variables [Dupuis and Jones, 2006]. The threshold-
excess method or the point process method can both be used to estimate the dependence parameter a in
equation (4), with details given in sections 3.1 and 3.2, respectively.

Figure 1. Three representations of ‘‘extreme values’’ following different extreme value methods. Thresholds and joint extremes are given for the (left) threshold-excess method, (middle)
point process method, and (right) conditional method. The data were generated from a bivariate logistic model (equation (4)) with dependence a 5 0.9 and Gumbel margins.

Water Resources Research 10.1002/2013WR014616

ZHENG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2053

I Other multivariate EVT methods define “extreme” by some kind of
threshold

• Method #2: threshold models
• Method #3: point process
• Method #4: conditional modelling (× – not discussed today)

I Better use of data (but other trade-offs)
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Multivariate extremes

then all data points with X> uYjX (green open circles) are defined as extremes when modeling the distribu-
tion of YjX. The extremes when modeling the distribution of XjY are defined analogously, with the horizon-
tal green line representing uXjY and the green ‘‘plus’’ symbols indicating extremes. The extreme events in
the upper quadrant (green circles filled with plus symbols) are considered by both YjX and XjY when using
the conditional method (for details see section 3.3).

2.2. Overview of Bivariate Extreme Value Concepts
For simplicity, the bivariate margins of (X, Y) are typically assumed to follow a standard Fr!echet distribution,
i.e., FðzÞ5exp ð21=zÞ; z > 0, where z 5 x or y. However, this implies no loss of generality of the characteriza-
tion of the bivariate extreme value distribution, since any other marginal distributions, whose extremal
properties are determined by the univariate characterizations (GEV or GPD), can always be transformed into
the standard Fr!echet form [Coles and Tawn, 1994].

In bivariate extreme value theory, the paired maxima are normalized to M#n5ðM#x;n; M#y;nÞ, where M#x;n5
max i51;::::;nfXig=n and M#y;n5 max i51;::::;nfYig=n, in order to avoid degeneracy of the limiting distribution as
n becomes large. Then if the limiting distribution of M#n exists, it has the form of:

Pr fM#x;n $ x; M#y;n $ yg ! Gðx; yÞ (3)

as n!1, where G is a nondegenerate distribution function (i.e., Gðx; yÞ < 1 for any x and y) that possesses
the max-stability property, and satisfies certain homogeneity and mean constraints [Coles, 2001].

A number of parametric models have been developed based on the characterization of bivariate extreme
value distributions in equation (3) [Kotz and Nadarajah, 2000], such as the logistic model, the negative logis-
tic model, the bilogistic model, the negative bilogistic model, and the Dirichet model (details of these mod-
els are given in Appendix A). Among them, the logistic model is frequently used due to its simple structure
and low number of parameters [Tawn, 1988]:

Gðx; yÞ5exp f2ðx21=a1y21=aÞag 0 < a $ 1; x > 0; y > 0 (4)

where x and y are margins of the bivariate vector following the standard Fr!echet distribution. The parame-
ter a is used to quantify the dependence strength with a! 0 and a 5 1 representing complete depend-
ence and independence, respectively. The parameter a measures the dependence between two random
variables at extreme levels, and differs from the correlation coefficient q which measures the overall linear
association between the full distributions of the two variables [Dupuis and Jones, 2006]. The threshold-
excess method or the point process method can both be used to estimate the dependence parameter a in
equation (4), with details given in sections 3.1 and 3.2, respectively.

Figure 1. Three representations of ‘‘extreme values’’ following different extreme value methods. Thresholds and joint extremes are given for the (left) threshold-excess method, (middle)
point process method, and (right) conditional method. The data were generated from a bivariate logistic model (equation (4)) with dependence a 5 0.9 and Gumbel margins.

Water Resources Research 10.1002/2013WR014616

ZHENG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2053

a – As Fn(nz) = e−1/z for unit
Fréchet z from slide 16.

b – As nV (x) = V (x/n) is

homogeneous of order −1.

I Data (X1, . . . ,XD) ∼ F (X1, . . . ,XD).

I For each margin d , assume Xd − ud |Xd > ud ∼ GPD

I Transform to unit Fréchet margins above u: Xd → X̃d .
⇒ F̃ (X̃1, . . . , X̃D) is approx Fréchet(1) above u (and
something else below u).

I For large n (and above u):

F̃ (X̃1, . . . , X̃D) =
[
F̃ n(X̃1, . . . , X̃D)

]1/n

≈a
[
exp

{
−V (X̃1/n, . . . , X̃D/n)

}]1/n

=b exp{−V (X̃1, . . . , X̃D)}.

I Finally, as F (X1, . . . ,XD) = F̃ (X̃1, . . . , X̃D) then

F (X1, . . . ,XD) ≈ G (X1, . . . ,XD) above u.

I.e. we can model threshold exceedances using a MEVD.
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Multivariate extremes
compute the exceedance probability
of floods in the lower reaches of the
catchment that are produced by a
combination of extreme rainfall falling
on the catchment, and storm tides
determining the water level at the
catchment outlet. The catchment
(bounded by red lines), the Fort Deni-
son tide gauge (square symbol), and
21 daily rainfall gauges (black dots)
are presented in Figure 5. Following
Zheng et al. [2013], daily rainfall at
each gauge was paired with the daily
maximum storm surge over the same
period to enable dependence analysis.
The respective dependence parame-
ters between the 21 daily rainfall
gauges and the storm tide gauge
were similar, and therefore, we
selected the longest overlapping rain-
fall record (Sydney Observatory Hill,
approximately 92 years) for illustra-
tion. The resultant 33,503 paired data
points can be seen as black open
circles in Figure 6 (left plot).

5.1. Determination of Dependence Strength
The three statistical methods described in section 3 are used to fit the paired rainfall-surge data. To fit the
marginal threshold exceedances to the GPD, it is necessary to remove the temporal clustering and ensure
the stationarity of the extremes. Ferro and Segers [2003] developed an extremal index that measures the
reciprocal mean cluster size of extremes to determine the independent extreme events, and Chavez-Demou-
lin and Davison [2012] used covariate regression to account for the nonstationarity. An analysis on our data
using these approaches shows no evidence of temporal dependence or nonstationarity.

We also used diagnostic plots, Chi (v) and Chibar ð!vÞ, to examine the asymptotic behavior of this data
set [Coles et al., 1999], and results showed strong evidence of asymptotic dependence. Similar observa-
tions were made for other daily rainfall gauges in Figure 5 paired with the Fort Denison tide gauge.
This supports the use of asymptotically dependent models for the rainfall-surge data sets considered in
this study. An extensive analysis on the asymptotic properties has been performed in Zheng et al.
[2013].

Figure 6. Data and fitted model density plots for the (left) rainfall-surge data set and other two independent data sets. Red ‘‘plus’’ symbols and blue solid curves indicate the joint
exceedances and joint density, respectively.

Figure 5. The Hawkesbury-Nepean catchment near Sydney. The catchment is
bounded by red lines. The Fort Denison tide gauge and daily rainfall gauges are,
respectively, represented by the yellow square and the black dots. The red triangle
shows the river cross section at Spencer.

Water Resources Research 10.1002/2013WR014616

ZHENG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2062

Modelling joint extreme rainfall (dots) and tide surge (square).
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Multivariate extremes

compute the exceedance probability
of floods in the lower reaches of the
catchment that are produced by a
combination of extreme rainfall falling
on the catchment, and storm tides
determining the water level at the
catchment outlet. The catchment
(bounded by red lines), the Fort Deni-
son tide gauge (square symbol), and
21 daily rainfall gauges (black dots)
are presented in Figure 5. Following
Zheng et al. [2013], daily rainfall at
each gauge was paired with the daily
maximum storm surge over the same
period to enable dependence analysis.
The respective dependence parame-
ters between the 21 daily rainfall
gauges and the storm tide gauge
were similar, and therefore, we
selected the longest overlapping rain-
fall record (Sydney Observatory Hill,
approximately 92 years) for illustra-
tion. The resultant 33,503 paired data
points can be seen as black open
circles in Figure 6 (left plot).

5.1. Determination of Dependence Strength
The three statistical methods described in section 3 are used to fit the paired rainfall-surge data. To fit the
marginal threshold exceedances to the GPD, it is necessary to remove the temporal clustering and ensure
the stationarity of the extremes. Ferro and Segers [2003] developed an extremal index that measures the
reciprocal mean cluster size of extremes to determine the independent extreme events, and Chavez-Demou-
lin and Davison [2012] used covariate regression to account for the nonstationarity. An analysis on our data
using these approaches shows no evidence of temporal dependence or nonstationarity.

We also used diagnostic plots, Chi (v) and Chibar ð!vÞ, to examine the asymptotic behavior of this data
set [Coles et al., 1999], and results showed strong evidence of asymptotic dependence. Similar observa-
tions were made for other daily rainfall gauges in Figure 5 paired with the Fort Denison tide gauge.
This supports the use of asymptotically dependent models for the rainfall-surge data sets considered in
this study. An extensive analysis on the asymptotic properties has been performed in Zheng et al.
[2013].

Figure 6. Data and fitted model density plots for the (left) rainfall-surge data set and other two independent data sets. Red ‘‘plus’’ symbols and blue solid curves indicate the joint
exceedances and joint density, respectively.

Figure 5. The Hawkesbury-Nepean catchment near Sydney. The catchment is
bounded by red lines. The Fort Denison tide gauge and daily rainfall gauges are,
respectively, represented by the yellow square and the black dots. The red triangle
shows the river cross section at Spencer.

Water Resources Research 10.1002/2013WR014616

ZHENG ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2062
I Uses censored likelihood for marginal and joint exceedances
⇒ means this method only good for low D.

I Logistic model

I Extremal dependence (α) weakens as distance from tide gauge
increases.

I Doesn’t require any joint exceedances (RHS), but will estimate
compete independence!

59/95



Multivariate extremes

then all data points with X> uYjX (green open circles) are defined as extremes when modeling the distribu-
tion of YjX. The extremes when modeling the distribution of XjY are defined analogously, with the horizon-
tal green line representing uXjY and the green ‘‘plus’’ symbols indicating extremes. The extreme events in
the upper quadrant (green circles filled with plus symbols) are considered by both YjX and XjY when using
the conditional method (for details see section 3.3).

2.2. Overview of Bivariate Extreme Value Concepts
For simplicity, the bivariate margins of (X, Y) are typically assumed to follow a standard Fr!echet distribution,
i.e., FðzÞ5exp ð21=zÞ; z > 0, where z 5 x or y. However, this implies no loss of generality of the characteriza-
tion of the bivariate extreme value distribution, since any other marginal distributions, whose extremal
properties are determined by the univariate characterizations (GEV or GPD), can always be transformed into
the standard Fr!echet form [Coles and Tawn, 1994].

In bivariate extreme value theory, the paired maxima are normalized to M#n5ðM#x;n; M#y;nÞ, where M#x;n5
max i51;::::;nfXig=n and M#y;n5 max i51;::::;nfYig=n, in order to avoid degeneracy of the limiting distribution as
n becomes large. Then if the limiting distribution of M#n exists, it has the form of:

Pr fM#x;n $ x; M#y;n $ yg ! Gðx; yÞ (3)

as n!1, where G is a nondegenerate distribution function (i.e., Gðx; yÞ < 1 for any x and y) that possesses
the max-stability property, and satisfies certain homogeneity and mean constraints [Coles, 2001].

A number of parametric models have been developed based on the characterization of bivariate extreme
value distributions in equation (3) [Kotz and Nadarajah, 2000], such as the logistic model, the negative logis-
tic model, the bilogistic model, the negative bilogistic model, and the Dirichet model (details of these mod-
els are given in Appendix A). Among them, the logistic model is frequently used due to its simple structure
and low number of parameters [Tawn, 1988]:

Gðx; yÞ5exp f2ðx21=a1y21=aÞag 0 < a $ 1; x > 0; y > 0 (4)

where x and y are margins of the bivariate vector following the standard Fr!echet distribution. The parame-
ter a is used to quantify the dependence strength with a! 0 and a 5 1 representing complete depend-
ence and independence, respectively. The parameter a measures the dependence between two random
variables at extreme levels, and differs from the correlation coefficient q which measures the overall linear
association between the full distributions of the two variables [Dupuis and Jones, 2006]. The threshold-
excess method or the point process method can both be used to estimate the dependence parameter a in
equation (4), with details given in sections 3.1 and 3.2, respectively.

Figure 1. Three representations of ‘‘extreme values’’ following different extreme value methods. Thresholds and joint extremes are given for the (left) threshold-excess method, (middle)
point process method, and (right) conditional method. The data were generated from a bivariate logistic model (equation (4)) with dependence a 5 0.9 and Gumbel margins.
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I As threshold-exceedance approach is inefficient,
consider reworking extremes as point process

I For bivariate X ,Y , with block maxima limit G (X ,Y ).

I Define sequence of point processes {Nn} as

Nn = {(x1/n, y1/n), . . . , (xn/n, yn/n)} .

I Then
Nn → N in distribution as n→∞,

to a non-homogeneous Poisson process on (0,∞)2/{(0, 0)}.
I Reparameterising to pseudo-polar r = x + y , w = x/(x + y) gives

the intensity function of λ(r ,w) = 2 dH(w)
r2

I If we define region A = {(x , y) : r > r0} then convergence is
guaranteed (away from the origin) and likelihood function is simply

L(θ|w) ∝
NA∏

i=1

h(wi |θ), where wi = xi/(xi + yi ).
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After transforming both margins at extreme levels ðX; YÞ! ð~X ; ~Y Þ, we can model the transformed extremes
via:

Gðx; yÞ5exp f2Vð~x ; ~yÞg x > ux ; y > uy (8)

for sufficiently high thresholds ux and uy.. V is the exponent measure function and Vð~x ; ~yÞ5ð~x21=a1~y 21=aÞa

for the logistic model in equation (4).

Inference for the threshold-excess model is typically obtained through a censored likelihood constructed
from G(x,y) based on all data (x,y) [Coles and Tawn, 1991]. The likelihood function L of the censored method
is:

Lðh; ðx1; y1Þ; . . .; ðxn; ynÞÞ5
Yn

i51

uðh; ðxi ; yiÞÞ (9)
where

uðh; ðx; yÞÞ5

@2
xy Gðh; ðx; yÞÞ x > ux; y > uy

@x Gðh; ðx; uyÞÞ x > ux; y # uy

@y Gðh; ðux; yÞÞ x # ux; y > uy

Gðh; ðux; uyÞÞ x # ux; y # uy

8
>>>>><

>>>>>:

(10)

where the vector h represents the parameters to be estimated and n is the total number of the bivariate
data points. @x , @y , and @2

xy represent the derivatives with respect to x, y, and both x and y, respectively. As
shown in equation (10), for the joint exceedances ðx > ux ; y > uyÞ; @2

xy Gðh; ðx; yÞÞ provides the appropriate
likelihood component, while the observations that lie below the threshold provide only a censored

Figure 2. Illustration of the spectral density function, h(w), for three data sets generated from the bivariate logistic model with different levels of dependence (a 5 0.1, 0.5, and 0.95).
(top) Scatterplots of each data set, with extreme events shown in grayed dots. (bottom) Histograms of w 5 x/(x 1 y) for the extreme events with superimposed spectral density functions,
h(w).
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I Illustrations of h(w) capturing extremal dependence.

I Full dependence: h(w) = {0.5}. Independence: h(w) = {0, 1}.
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The fitted density functions for the logistic (red contours) and negative logistic (blue contours) models
are given in the left plot of Figure 8. Their corresponding spectral density functions h(w) against the
observed w for the extreme events (gray ‘‘plus’’ symbols in the left plot) are given in the right plot. The
estimated h(w) appears to provide a reasonable match with the w components of the observed
extremes as shown in the right plot. Overall, by visualizing the two subplots in Figure 8, both models
match the distribution of the extreme data above the yellow curve reasonably well, although visually
the negative logistic model performed slightly better than the logistic model as it offered lower density
for w ! 0.5. For the fitted bivariate density functions in the left plot, a discontinuity can be observed at
the threshold values of 60 mm and 0.3 m for rainfall and storm surge, respectively, due to the transfor-
mation of equation (11).

5.1.3. Measurement of Dependence Strength Using the Conditional Method
Continuing with the rainfall-surge data set from the Hawkesbury-Nepean catchment, we illustrate the appli-
cation of the conditional method with X representing daily rainfall data and Y representing daily maximum
storm surge data. In Step 1, the marginal thresholds are determined (60 mm for the daily rainfall and 0.3 m
for the daily maximum storm surge) and the GPD is used to fit the margins individually, and the GPD param-
eter estimates were identical to those for the threshold-excess and point process methods. The estimated
parameters are then used to transform the full margins to the standard Gumbel distributions via equation
(13).

In Step 2, we specified uYjX 5 60 mm and uXjY 5 0.3 m for the conditional model YjX and XjY, respectively, to
enable a fair comparison with the threshold-excess method (ux 5 60 mm and uy 5 0.3 m). Using the likeli-
hood method given in equation (15), the estimated parameters were âYjX 5 0:370 ð0:301; 0:439Þ,
b̂YjX 5 0:417 ð0:358; 0:476Þ, âXjY 5 0:924 ð0:848; 1Þ, and b̂XjY 5 0:728 ð0:659; 799Þ. Based on these
estimates, XjY is likely to possess stronger overall dependence than YjX as âXjY is larger than âYjX .

5.1.4. Summary and Discussion of the Dependence Strength
As shown in Table 1, although different parametric models exhibited various performances in estimat-
ing the dependence for the rainfall-surge data set from Sydney in terms of AIC values, the point pro-
cess method consistently produced stronger dependence estimates relative to the threshold-excess
method. Three asymmetric models—the bilogistic, negative bilogistic, and Dirichlet models—were
considered for both the threshold-excess and the point process methods. It was observed that the
difference of the estimates of the two parameters in the asymmetric models was insignificant, sug-
gesting that the rainfall-surge data set from Sydney is likely to be symmetric [Kotz and Nadarajah,
2000].

Figure 8. Point process model fitting for the Fort Denison rainfall-surge data set. (left) Scatterplot of the data with the selected threshold,
r0 (yellow line), the extreme events (gray plus symbols) used to fit the model, the fitted logistic model (red contours), and negative logistic
model (blue contours). (right) The fitted hðwÞ of logistic model (the red line) and negative logistic model (the blue line) against the
observed w.
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I Weak dependence (again).

I AIC Logistic (3710), negative logistic (3683).

I Bump: zero rainfall violates Poisson process assumptions.
(No-one really knows how to fix this . . . )
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Recall (univariate block maxima):
If sequences an > 0 and bn exist such that

Pr

(
Mn − bn

an
≤ z

)
= F n(anz + bn)→ G (z) as n→∞,

then G is a max-stable distribution (and in particular in the GEV family).

I We are interested in modelling extremes spatially, so it is natural to
define a suitable process:

Max-stable process

Let T be an index set and {Ỹi (t)}t∈T , i = 1, . . . , n be n independent
realisations of a continuous stochastic process. If there are sequences of
continuous random functions an(t) > 0 and bn(t) such that

lim
n→∞

maxni=1 Ỹi (t)− bn(t)

an(t)
= Y (t) t ∈ T ,

then Y (t) is a max-stable process.
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Two properties of the max-stable process:

I For any fixed t0 ∈ T , the one-dimensional margin Y (t0) follows a
GEV distribution.

I For any finite K -dimensional set t1, . . . , tK , the K -dimensional
margin (Y (t1), . . . ,Y (tK )) belongs to the class of K -dimensional
extreme value distributions.

(Contrast with similarity to Gaussian process.)

I This standardised process Z (t) has unit Fréchet margins.

I If Z (t) is stationary, it can be expressed through its spectral
representation.

I A simple, intuitive version of this is known as the storm profile
model.
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Spectral representation (storm process model):

Let {Xj ,Uj}j≥1 be a Poisson process Λ on Rd × R+, with counting
measure Λ(·) :=

∑
j I(Xj ,Uj )(·) and intensity measure ν(dx)× u−2du,

where I(Xj ,Uj )(A) is the indicator function of the random number of points

falling in a bounded set A ⊂ Rd × R+ and ν is a positive measure.

For a non-negative measurable function f (x − t) (for fixed t ∈ T ) such
that

∫
Rd f (x − t)v(dx) = 1, the stochastic process

Z (t) := max
j=1,2,...

{Uj f (Xj − t)} t ∈ T

is a (stationary) max-stable process.

Storm profile model interpretation

I U = storm magnitude

I X = storm centre

I f = storm shape
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0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

3
.0

I Gaussian storm shape (”Smith” model), with 4 storms

I Need trick to sample max of n =∞ storms.

I Any point is max of i.i.d. scalar process (Fréchet)

I Clear that spatial dependence is induced
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Figure 1.1: Two simulations of the Smith model with di↵erent ⌃ matrices. Left panel: �11 = �22 = 9/8
and �12 = 0. Right panel: �11 = �22 = 9/8 and �12 = 1. The max-stable processes are transformed to
unit Gumbel margins for viewing purposes.

where U is a rotation matrix and ⇤ is a diagonal matrix of the eigenvalues. Thus, U controls
the direction of the principal axes and ⇤ controls their lengths.

If ⌃ is diagonal and all the diagonal terms are identical, then ⌃ = ⇤, so that the ellipsoids
change to circles and model (1.4) becomes isotropic. Figure 1.1 is a nice illustration of this. The
left panel corresponds to an isotropic random field while the right one depicts a clear anisotropy
for which we have

⌃ =


9/8 1
1 9/8

�
=


cos(�3⇡/4) sin(�3⇡/4)
� sin(�3⇡/4) cos(�3⇡/4)

� 
1/8 0
0 17/8

� 
cos(�3⇡/4) � sin(�3⇡/4)
sin(�3⇡/4) cos(�3⇡/4)

�
,

so that the main direction of the major principal axis is ⇡/4 and a one unit move along the
direction �⇡/4 yields the same decrease in dependence as 17 unit moves along the direction
⇡/4.

1.2 The Schlather Model

More recently, Schlather [2002] introduced a second characterisation of max-stable processes.
Let Y (·) be a stationary process on Rd such that E[max{0, Y (x)}] = 1 and {⇠i, i � 1} be the
points of a Poisson process on R+

⇤ with intensity measure ⇠�2d⇠. Then Schlather shows that a
stationary max-stable process with unit Fréchet margins can be defined by:

Z(x) = max
i
⇠i max {0, Yi(x)} (1.6)

where the Yi(·) are i.i.d copies of Y (·).
As before, the max-stable property of Z(·) stems from the superposition of n independent,

identical Poisson processes, while the unit Fréchet margins holds by the same argument as for
the Smith model. Indeed, let consider the following set:

E =
n

(⇠, y(x)) 2 R+
⇤ ⇥ Rd : ⇠max(0, y(x)) > z

o

I Realisations of Smith model in D = 2 dimensions.

I Clear spatial and directional dependence (in a Gaussian sense).
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Figure 1.3: Two simulations of the Schlather model with di↵erent correlation functions having approx-
imately the same practical range. Left panel: Whittle–Matérn with c1 = c2 = ⌫ = 1. Right panel:
Powered exponential with c1 = ⌫ = 1 and c2 = 1.5. The max-stable processes are transformed to unit
Gumbel margins for viewing purposes.

where c2 and ⌫ are the range and the smooth parameters of the correlation function, � is
the gamma function and J⌫ and K⌫ are the Bessel and the modified Bessel function of the third
kind with order ⌫ and d is the dimension of the random fields.

Accordingly to Gaussian processes, it is possible to add a sill c1 and a nugget e↵ect ⌫ to
these correlation functions i.e.

⇢⇤(h) =

(
⌫ + c1, h = 0

c1⇢(h), h > 0

where ⇢ is one of the correlation functions introduced above. However, as Schlather [2002]
consider stationary standard Gaussian processes, the sill and nugget parameters satisfy ⌫ = 1�c1

because the correlation function has to be equal to 1 at the origin.
Figure 1.2 plots the correlation functions for the parametric families introduced above. The

left panel was generated with the following lines

> covariance(nugget = 0, sill = 1, range = 1, smooth = 4, cov.mod = "whitmat",

+ xlim = c(0,9), ylim = c(0, 1))

> covariance(nugget = 0, sill = 1, range = 1, smooth = 2, cov.mod = "whitmat",

+ add = TRUE, col = 2, xlim = c(0,9))

> covariance(nugget = 0, sill = 1, range = 1, smooth = 1, cov.mod = "whitmat",

+ add = TRUE, col = 3, xlim = c(0,9))

> covariance(nugget = 0, sill = 1, range = 1, smooth = 0.5, cov.mod = "whitmat",

+ col = 4, add = TRUE, xlim = c(0,9))

> legend("topright", c(expression(nu == 4), expression(nu == 2),

+ expression(nu == 1), expression(nu == 0.5)),

+ col = 1:4, lty = 1, inset = 0.05)

Figure 1.3 plots two realisations of the Schlather model with the powered exponential and
Whittle–Matérn correlation functions. It can be seen that the powered exponential model leads
to more rough random fields as, with this particular setting for the covariance parameters,
the slope of the powered exponential correlation function near the origin is steeper than the
Whittle–Matérn.

The correlation functions introduced above are all isotropic, but model (1.7) doesn’t require
this assumption. From a valid correlation function ⇢ it is always possible to get an elliptical

”Schlather” model based on generalisation of spectral representation

Z (t) = max
j

[Uj(t) max{0,Wj(t)}]

where W (t) is a stationary process on Rd , Wj(t) are i.i.d replicates, and
E[max{0,Wj(t)}] = 1.

I Allows general noise processes (w. geosts. dependence functions)
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For the storm-profile model, the distribution function of
(Z (t1), . . . ,Z(tK )) is

Pr(Z (tk) ≤ zk , k = 1, . . . ,K ) = exp

[
−
∫

Rd

max
1≤k≤K

{
f (x − tk)

zk

}
ν(dx)

]

which has unit Fréchet margins as (zk →∞)

Pr(Zt ≤ z) = exp

(
−1

z

∫

Rd

f (x − t)ν(dx)

)
= exp(−1/z).

Beyond univariate margins, tractable distribution functions are not really
viable for K ≥ 3.
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Modelling spatial extremes with the Gaussian (Smith) storm model:

I Two spatial locations ti , tj

I h = (tj − tj)
>

I a(h) = (h>Σ−1h)1/2

I Σ is covariance of Gaussian f

Pr(Z (0) ≤ zi ,Z (h) ≤ zj)

= exp

[
− 1

zi
Φ

(
a(h)

2
+

1

a(h)
log

zj
zi

)
− 1

zj
Φ

(
a(h)

2
+

1

a(h)
log

zi
zj

)]
.

I So we can model two spatial locations only with this model.

I For K ≥ 2 need to use (say) composite likelihoods (Padoan et al., 2010) –

lots of maths

I Could also use ABC etc.
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Padoan, Ribatet, and Sisson: Likelihood-Based Inference for Max-Stable Processes 271

Figure 5. Top panels: Simulated site locations (open circles) over a [0,40]2 region using both random uniformly (right panel) and regularly
(left panel) distributed sites, for which artificial data are generated under spatial dependence. Lines connect site-pairs used to construct the
composite log-likelihood with minimum asymptotic covariance trace. Bottom panels: Trace of the asymptotic variance, tr(Ĩ(ψ)−1), obtained by
using neighboring sites only in computation of the MCLE. Neighboring sites are site pairs which are located within distance δ of each other.
A color version of this figure is available in the electronic version of this article.

the consequence of storms following either the coastline or the
massif. Moreover, we note that conditional predictive inference
is available via the pairwise conditional distribution. Figure 8
(right plot) illustrates the spatial variation of pointwise 50-year

return level estimates, conditional on observing an event of
magnitude 13 cm at the site indicated by the star.

Finally, we consider model goodness of fit based on re-
peated simulation under the fitted model. From the observed

Figure 6. Locations of the 46 gauging stations (crosses) on the east coast of the U.S., with superimposed elevation map (meters) highlighting
the shape of the Appalachian Mountains.

I 46 rainfall gauges East USA, with elevation (Appalachian Mount.)

I Fit Gaussian storm max-stable process using CL

I Spatial surfaces for µ(t), σ(t), ξ(t) (GEV margins)
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Table 5. Some Gaussian extreme value processes and their corresponding maximized negative composite log-likelihood,
degrees of freedom, and the CLIC score

Model −ℓP (ψ̂MCLE;y) df CLIC

M0: µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,110.5 12 825,679
λ(x) = β0 + β1(lat) + β2(alt) + β2(lon)

ξ(x) = γ0
M1: µ(x) = α0 + α1(lat) + α2(alt) 412,111.7 11 825,526

λ(x) = β0 + β1(lat) + β2(alt) + β3(lon)

ξ(x) = γ0
M2: µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,113.6 11 825,459

λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M3: µ(x) = α0 + α1(lat) + α3(lon) 412,234.4 11 825,840
λ(x) = β0 + β1(lat) + β2(alt) + β3(lon)

ξ(x) = γ0
M4: µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,380.9 11 826,177

λ(x) = β0 + β1(lat) + β3(lon)

ξ(x) = γ0
M5: µ(x) = α0 + α1(lat) + α2(alt) 412,113.9 10 825,327

λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M6: µ(x) = α0 + α1(lat) 412,314.4 9 825,684
λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

data {ym,k}, we compute ỹm = maxk∈K′{ym,k} for each block
m = 1, . . . ,M, where the set K′ ⊆ {1, . . . ,K} is formed by some
subset of sites. The model-based distribution of each ỹm is esti-
mated based on 10,000 simulated datasets generated under the
fitted model. Figure 9 illustrates in quantile-plot style the ith
order-statistic ỹm(i) versus the mean of its distribution under
the fitted model, in close analogy with diagnostic plots for uni-
variate extremes (e.g., Coles 2001). Dashed lines correspond
to 95% confidence envelopes (e.g., Davison and Hinkley 1997,
p. 153).

Specifically, Figure 9 considers [top plots, (a)–(c)] three dif-
ferent pairs of locations, representing sites separated by short,
medium, and long distances, and [bottom plots, (d)–(f)] the 10
lowest, the 10 highest, and all K = 46 sites. The displayed
plots are typical of the many examined for these data and

Figure 7. Pointwise 50-year return level map (cm) estimated from
the fitted Gaussian extreme value process, model M5.

model. Overall, the diagnostics suggest that the observed ex-
treme precipitation data for this region is consistent with the
fitted Gaussian extreme value model.

6. CONCLUSION

As a natural generalization of extremal dependence struc-
tures, max-stable processes are a powerful tool for the modeling
of multivariate extremes. Unfortunately, the intractability of the
multivariate density function precludes inference except in triv-
ial cases (e.g., bivariate), or requires additional approximations
and immense computational overheads (e.g., Jiang and Turnbull
2004; Bortot, Coles, and Sisson 2007; Sisson, Fan, and Tanaka
2007).

This article has developed composite likelihood-based infer-
ential methods for general max-stable processes. Our results
demonstrate good applicability in the spatial context. The bene-
fits of this likelihood-based approach are the flexible joint mod-
eling of marginal and dependence parameters, coupled with
good estimator behavior with finite samples, all at moderate
computational cost.

Modifications of the model formulation would draw alterna-
tive representations of extremal modeling into the composite-
likelihood based framework, given the known links between
these and block maxima (GEV) approaches (e.g., Coles 2001).
These include threshold excess models for marginals (Davison
and Smith 1990), and the limiting Poisson characterization of
extremes. The obvious practical benefit from these extensions
would be the incorporation of more data into the modeling
process.

APPENDIX

We present conditions for the asymptotic normality and consistency
of the MCLE, explicit expressions for the distribution function (3),
the density function (4), and the derivatives required for the estimated
covariance matrix in Section 3.2.

I Model choice using CLIC (Varin & Vidoni, 2005)

I ξ(t) typically does not change over space
(i.e. not enough data to clearly identify variations.)
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Table 5. Some Gaussian extreme value processes and their corresponding maximized negative composite log-likelihood,
degrees of freedom, and the CLIC score

Model −ℓP (ψ̂MCLE;y) df CLIC

M0: µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,110.5 12 825,679
λ(x) = β0 + β1(lat) + β2(alt) + β2(lon)

ξ(x) = γ0
M1: µ(x) = α0 + α1(lat) + α2(alt) 412,111.7 11 825,526

λ(x) = β0 + β1(lat) + β2(alt) + β3(lon)

ξ(x) = γ0
M2: µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,113.6 11 825,459

λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M3: µ(x) = α0 + α1(lat) + α3(lon) 412,234.4 11 825,840
λ(x) = β0 + β1(lat) + β2(alt) + β3(lon)

ξ(x) = γ0
M4: µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,380.9 11 826,177

λ(x) = β0 + β1(lat) + β3(lon)

ξ(x) = γ0
M5: µ(x) = α0 + α1(lat) + α2(alt) 412,113.9 10 825,327

λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M6: µ(x) = α0 + α1(lat) 412,314.4 9 825,684
λ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

data {ym,k}, we compute ỹm = maxk∈K′{ym,k} for each block
m = 1, . . . ,M, where the set K′ ⊆ {1, . . . ,K} is formed by some
subset of sites. The model-based distribution of each ỹm is esti-
mated based on 10,000 simulated datasets generated under the
fitted model. Figure 9 illustrates in quantile-plot style the ith
order-statistic ỹm(i) versus the mean of its distribution under
the fitted model, in close analogy with diagnostic plots for uni-
variate extremes (e.g., Coles 2001). Dashed lines correspond
to 95% confidence envelopes (e.g., Davison and Hinkley 1997,
p. 153).

Specifically, Figure 9 considers [top plots, (a)–(c)] three dif-
ferent pairs of locations, representing sites separated by short,
medium, and long distances, and [bottom plots, (d)–(f)] the 10
lowest, the 10 highest, and all K = 46 sites. The displayed
plots are typical of the many examined for these data and

Figure 7. Pointwise 50-year return level map (cm) estimated from
the fitted Gaussian extreme value process, model M5.

model. Overall, the diagnostics suggest that the observed ex-
treme precipitation data for this region is consistent with the
fitted Gaussian extreme value model.

6. CONCLUSION

As a natural generalization of extremal dependence struc-
tures, max-stable processes are a powerful tool for the modeling
of multivariate extremes. Unfortunately, the intractability of the
multivariate density function precludes inference except in triv-
ial cases (e.g., bivariate), or requires additional approximations
and immense computational overheads (e.g., Jiang and Turnbull
2004; Bortot, Coles, and Sisson 2007; Sisson, Fan, and Tanaka
2007).

This article has developed composite likelihood-based infer-
ential methods for general max-stable processes. Our results
demonstrate good applicability in the spatial context. The bene-
fits of this likelihood-based approach are the flexible joint mod-
eling of marginal and dependence parameters, coupled with
good estimator behavior with finite samples, all at moderate
computational cost.

Modifications of the model formulation would draw alterna-
tive representations of extremal modeling into the composite-
likelihood based framework, given the known links between
these and block maxima (GEV) approaches (e.g., Coles 2001).
These include threshold excess models for marginals (Davison
and Smith 1990), and the limiting Poisson characterization of
extremes. The obvious practical benefit from these extensions
would be the incorporation of more data into the modeling
process.

APPENDIX

We present conditions for the asymptotic normality and consistency
of the MCLE, explicit expressions for the distribution function (3),
the density function (4), and the derivatives required for the estimated
covariance matrix in Section 3.2.
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Figure 8. Left: Contour plot of the fitted extremal coefficient θ(h) = 2"(a(h)/2); Right: Pointwise 50-year, conditional return level map
(cm) estimated from the fitted Gaussian extreme value process. Estimates are conditioned on observing an event of magnitude 13 cm at the site
indicated by a star.

A.1 Vector Notation

Let f be a real-valued function in the d × 1 vector x = (x1, . . . , xd).
Then the 1 × d derivative vector, Dxf (x), has ith element ∂f (x)/∂xi.
The corresponding Hessian matrix is given by Hxf (x) = Dx{Dxf (x)}⊤.

A.2 Conditions for the Consistency and Asymptotic
Normality of the MCLE

We provide conditions under which the MCLE (Section 3.1) is con-
sistent and asymptotically normal. While in this article we consider
the specific case of the marginal pairwise composite log-likelihood (6),

Figure 9. Goodness-of-fit diagnostics for the fitted model for various subsets of site locations, K′ ∈ {1, . . . ,K}. Panels display quantile plots
of observed block-maxima ỹm = maxk∈K′{ym,k} versus means of their respective distributions, obtained by simulation, under the fitted model
(10,000 replications). Dashed lines indicate simulation-based 95% confidence envelopes. Top panels: K′ consisting of three pairs of locations
separated by (a) short (≈ 20 km), (b) medium (≈ 350 km), and (c) long (≈ 735 km) distances. Bottom panels: K′ consisting of (d) the 10 lowest,
(e) the 10 highest, and (f) all K = 46 sites.

I LHS: Unconditional 50-year return levels

I RHS: 50-year return levels conditional on observing 13cm magnitude
event at ?

I Clear altitude and spatial dependence (in direction of mountain
range).
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Spatial extremes

Padoan, Ribatet, and Sisson: Likelihood-Based Inference for Max-Stable Processes 273

Figure 8. Left: Contour plot of the fitted extremal coefficient θ(h) = 2"(a(h)/2); Right: Pointwise 50-year, conditional return level map
(cm) estimated from the fitted Gaussian extreme value process. Estimates are conditioned on observing an event of magnitude 13 cm at the site
indicated by a star.

A.1 Vector Notation

Let f be a real-valued function in the d × 1 vector x = (x1, . . . , xd).
Then the 1 × d derivative vector, Dxf (x), has ith element ∂f (x)/∂xi.
The corresponding Hessian matrix is given by Hxf (x) = Dx{Dxf (x)}⊤.

A.2 Conditions for the Consistency and Asymptotic
Normality of the MCLE

We provide conditions under which the MCLE (Section 3.1) is con-
sistent and asymptotically normal. While in this article we consider
the specific case of the marginal pairwise composite log-likelihood (6),

Figure 9. Goodness-of-fit diagnostics for the fitted model for various subsets of site locations, K′ ∈ {1, . . . ,K}. Panels display quantile plots
of observed block-maxima ỹm = maxk∈K′{ym,k} versus means of their respective distributions, obtained by simulation, under the fitted model
(10,000 replications). Dashed lines indicate simulation-based 95% confidence envelopes. Top panels: K′ consisting of three pairs of locations
separated by (a) short (≈ 20 km), (b) medium (≈ 350 km), and (c) long (≈ 735 km) distances. Bottom panels: K′ consisting of (d) the 10 lowest,
(e) the 10 highest, and (f) all K = 46 sites.

I Always perform goodness-of-fit checks!
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The production of clean steels

Stereological extremes:

I Inclusions (impurities) degrade quality of steel

I Strength related to largest inclusion size

I 2D slice taken from 3D block

I Distribution of size of largest inclusion?

I EVT twist on Wicksell’s corpsucle problem

• Inference on distribution of radii of 3D spheres
based on 2D slice

• We want distribution of largest inclusions
• Spherical or ellipsoidal inclusions
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The production of clean steels

Extremes model

I Point process for inclusion centres, rate λ

I Location-independent inclusion diameters

I Inclusion diameters (V − v0)|V > v0 ∼ GPD(σ, ξ)

I Model for observed 2D diameters D = g(V )

• Computationally tractable (just) for spherical
inclusions

• Impractical for ellipsoidal inclusions

I Can use Approximate Bayesian Computation (ABC)

I Bortot et al (2007) use order statistics
S = (D(1), . . . ,D(n), n) where nobs = 112.

I Fan et al (2013) use 3 “Fearnhead & Prangle”
statistics.
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ABC – 1 slide recap

The basic mechanism:

I Draw samples (θ1, x1), (θ2, x2), . . . , (θN , xN) from
π(θ, x) = π(x | θ)π(θ)

I xk is simulated data from the likelihood with parameter θk

I Look at marginal distribution of π(θ | x ≈ y)

I If x is “close enough” to y then π(θ | x ≈ y) ≈ π(θ|y)

Dimension reduction:

I Condition x ≈ y is very unlikely (imagine high-dimensional time
series, or high-resolution image)

I Reduce data to summary statistics sx = S(x)

I Idea is then:

• Draw samples from π(θ, x)⇒ π(θ, sx)
• Look at the marginal distribution of π(θ | sx ≈ sy ) ≈ π(θ|sy )

Note: If sy are sufficient statistics, then π(θ|sy ) ≡ π(θ|y), otherwise
some loss of information. 79/95



Stereological extremes: variance inflation

Verification via comparison with MCMC output for spherical model
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Stereological extremes

Different results under ellipsoidal model
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Fitting a GEV (review)

Suppose x1, . . . , xn ∼ GEV(µ, σ, ξ) for large n.
Create histogram of counts s = (s1, . . . , sB).
Symbolic log-likelihood function is then

`(s|µ, σ, ξ) ∝
B∑

b=1

sb log [F (ab+1|µ, σ, ξ)− F (ab|µ, σ, ξ)]

n=1000, bins=11

y

D
e

n
s
ity

-2 0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

Standard GEV
Symbolic GEV

Note that `(s|µ, σ, ξ) tends to standard
likelihood as # bins gets large (so 1 or 0
observations per bin)

Computation:

I Optimisation of ` (v. quick)

I Creation of histogram s (slower)

← good fits with moderate bin numbers
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Fitting multivariate extremes

Exactly the same as before:

Have x1, . . . , xn ∼ f(x |θ) for large n where xi = (x1
i , . . . , x

p
i )> ∈ Rp.

Create multivariate histogram of counts s = (s1, . . . , sB) over Rp.

Symbolic log-likelihood function is then

`(s|θ) ∝
B∑

b=1

sb log

[∫

Db

f (z |θ)dz

]

Comments:

I Multivariate histograms become inefficient as p gets large
(leading to other symbol types . . . )

I Constructing histograms more difficult for large n, p (map-reduce)

I E.g. for bivariate models
∫

Db

f (z |θ)dz = F (b1, b2|θ)− F (a1, b2|θ)− F (b1, a2|θ) + F (a1, a2|θ)

where bin Db = [a1, b1]× [a2, b2].

I So 2p terms in integral – only practical for moderate p.
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Fitting multivariate extremes
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2D histogram

Example

I Data from spatial max-stable process (”Smith” model)

I Construct composite pairwise likelihood `C =
∑

i 6=j `(xi , xj |θ)

I Each `(xi , xj |θ) follows bivariate extremes model

I Look at bivariate histogram for each `(xi , xj)
(avoids high-D histogram problems)
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Fitting multivariate extremes
# Bins �11 �12 �22 µ � ⇠
2 149.3 (191.4) 53.9 (41.9) 321.1 (286.9) 21.888 (41.37) 5.804 (5.93) 0.392 (0.08)
3 122.3 (163.6) 53.3 (37.6) 265.3 (252.3) 7.969 (20.68) 2.478 (2.64) 0.207 (0.12)
4 125.1 (160.5) 49.4 (35.5) 243.8 (250.5) 1.987 (2.94) 1.876 (2.09) 0.140 (0.10)
5 121.7 (185.8) 41.3 (119.6) 236.1 (245.4) 1.676 (2.78) 2.056 (2.26) 0.105 (0.10)
7 119.3 (155.3) 39.6 (86.6) 229.3 (236.4) 1.545 (3.09) 1.525 (2.36) 0.071 (0.08)
10 114.4 (159.2) 38.3 (61.8) 191.7 (223.1) 1.580 (4.01) 1.458 (3.18) 0.047 (0.07)
classical 98.9 (81.1) 31.8 (12.9) 153.6 (222.6) 0.064 (0.01) 0.131 (0.01) 0.0025 (0.02)

# Bins �11 �12 �22 µ � ⇠
2 51.4 (60.2) 25.3 (20.2) 71.3 (67.4) 7.922 (5.23) 4.838 (2.19) 0.289 (0.06)
4 48.3(71.4) 26.2 (17.3) 65.8 (74.2) 0.618 (1.21) 1.320 (1.98) 0.045 (0.05)
7 44.7 (35.5) 22.6 (26.9) 45.4 (50.1) 0.445 (0.95) 1.791 (2.10) 0.010 (0.02)
10 38.4 (38.1) 19.4 (19.3) 43.6 (38.8) 0.473 (0.80) 0.318 (1.03) 0.003 (0.01)
classical 30.2 (20.4) 12.9 (9.8) 38.9 (22.1) 0.057 (0.01) 0.094 (0.008) 0.0008 (0.005)

Table 7: Histogram mean MSE of the constrOptim calculated MLE for each parameter
in the Smith model, with associated standard error in brackets. The parameter values of
(�11, �12, �22, µ, �, ⇠) used to generate each dataset were (200, 120, 150, 4, 6, 1). The top table
was from 5 locations, while the bottom table was from 10 locations.

4.2.2 Results

Five sets of coordinates were uniformly and randomly generated. For each location, 30 sets
of 100 GEV random values were used to create 30 symbolic histograms using the R function
rmaxstab. We generated 100 datasets of this nature, and the R function constrOptim was used
to find the MLE’s of µ, �, ⇠, �11, �12 and �22 for the Smith model and µ, �, ⇠, c1, c2 and v for the
Schlather model for each dataset. This was repeated for each dataset with varying numbers of
bins in each histogram. The average MSE and standard deviation for each parameter and each
� were calculated, with the results for the Smith model given in Table 7.

We can see that again, as expected, the Mean MSE for each parameter decreases with an
increasing number of bins. As we increase the number of bins, we have more data with which
to estimate the parameters with, leading to more precise estimates.

4.3 Gradient convergence

4.3.1 Overview

The maximum likelihood estimator of the pairwise composite likelihood function is unbiased,
meaning we can gain unbiased point estimates for each parameter. However adjustments are
needed for the shape of the likelihood function so that accurate inference can be achieved.

42

I Same performance as before

I Dependence parameters a function of # of spatial locations (obv.)

I Need more than 10 bins for acceptable accuracy. Concept ok tho. X
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Fitting spatial extremes

I Suppose we also have an arbitrarily large number of spatial locations

I Standard: Composite likelihood term L(xi , xj |θ, Li , Lj) for each
location pair (Li , Lj)

I # pairs (or triples or . . . ) in composite likelihood would explode

Figure 14: 50 locations aggregated into spatial symbols

We can see that this likelihood is e↵ectively the same as our previous bivariate symbolic likeli-
hood function, except instead of having set coordinates for each location we are now integrating
over all possible locations within each box.

For the Smith model:
Z xi2

xi1

Z yi2

yi1

Z xj2

xj1

Z yj2

yj1

F (uia, ujb)dyjdxjdyidxi

=

Z xi2
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⇣
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ujb
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ujb

uia

⌘⌘
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� = Standard normal distribution, a2 = (ti � tj)
T⌃�1(ti � tj)

⌃ = covariance matrix of the bivariate normal distribution

ti, tj = coordinates for each measurement: tk = (xk, yk)
T

uia has unit Frechet marginal distributions! uia =
⇣
1 + ⇠i

⇣yia � µi

�i

⌘⌘ 1
⇠i

+

For the Schlather model:
Z xi2

xi1

Z yi2

yi1

Z xj2

xj1

Z yj2

yj1

F (uia, ujb)dyjdxjdyidxi

=
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⇥

51

Alternatively:
Consider likelihood where location
is binned

Any locations in same bin are
considered the same location.

Rather than very many likelihood
contributions L(xi , xj |θ, Li , Lj) we
have (loosely)[∫

D̃j

∫
D̃i
L(xi , xj |θ, Li , Lj)dLidLj

]

for bins D̃i and D̃j

evaluated for pooled histogram
data.
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Fitting spatial extremes

I So replace likelihoods of pointwise pairs Li , Lj (n(n − 1)/2 = huge!)

with bin pairs D̃i , D̃j (far less & controllable)

I And replace pairwise symbolic likelihood (based on bivariate
histograms):

∫

D

f (z |θ, Li , Lj)dz = F (b1, b2|θ)−F (a1, b2|θ)−F (b1, a2|θ)+F (a1, a2|θ)

with ∫

D̃j

∫

D̃i

∫

D

f (z |θ, Li , Lj)dzdLidLj

I So binning data over time (dz) and space (dLj , dLi ).

I Note 1: pool the nij histograms of combined locations
`(combined) =

∏
ij `ij(Li , Lj)

I Note 2: need to be able to do integration fast.
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Fitting spatial extremes

Comments (positives):

Figure 14: 50 locations aggregated into spatial symbols

We can see that this likelihood is e↵ectively the same as our previous bivariate symbolic likeli-
hood function, except instead of having set coordinates for each location we are now integrating
over all possible locations within each box.

For the Smith model:
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=
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T⌃�1(ti � tj)

⌃ = covariance matrix of the bivariate normal distribution

ti, tj = coordinates for each measurement: tk = (xk, yk)
T

uia has unit Frechet marginal distributions! uia =
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For the Schlather model:
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51

For b × b grid no need to compute
all b(b − 1)/2 combinations of
grid-pairs.

If e.g. isotropic dependence
(depending only on distance)

e.g. (1, 1)↔ (1, 3) has same
dependence as (1, 2)↔ (1, 3) and
(1, 1)↔ (3, 1)

So can pool the bivariate
histograms

# Unique patterns depends on grid,
not number of spatial locations.

I As before: as bin sizes shrink in time and space, recover exact
composite likelihood approach (e.g. Padon et al, 2010)
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Fitting spatial extremes

Comments (negative/neutrals):

I Need to do the 4-dimensional integral many times:
∫

D̃j

∫

D̃i

∫

D

f (z |θ)dzdLidLj

a) different locations Li , Lj , b) different 2d data bins D.

I E.g. Smith:

F (z |θ) = exp

(
− 1

zi
Φ

(
a

2
+

1

a
log

zj
zi

)
− 1

zj
Φ

(
a

2
+

1

a
log

zj
zi

))

where a2 = (Li − Lj)
>Σ−1(Li − Lj). Or Schlather geostat models

etc.

I Integrating over z = (zi , zj)
> is easy as cdf F (z |θ) is known

I Not sure how to do space (Li , Lj) yet.

I Currently using numerical method but too slow.
Needs faster method. (In progress!)
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Fitting spatial extremes

Figure 15: An example of locations being split up into grids.

R function optim was then used to evaluate the maximum likelihood estimators for the each
parameter for the data for varying grid sizes.

We then randomly and uniformly generated 75 random locations in a 100 ⇥ 100 grid, and
again optim was used to evaluate the MLE’s for varying grid sizes. Additionally, the compu-
tation time of optim was recorded. Random datasets of varying sizes were then generated in a
100⇥100 grid, and the time taken to evaluate the MLE’s using the symbolic interval likelihood
were recorded. The aim was to determine the point at which the spatial symbolic likelihoods
with the numerical integral approximations become more e�cient than the methods seen earlier.

The computation time for the normal symbolic likelihood (Schlather model) for 20 locations
was measured 1000 times, allowing us to obtain the average time taken for one pairwise cal-
culation. Estimates of computation times for large numbers of locations can be extrapolated
from this: Suppose we have n locations, and one pairwise calculation takes x seconds. Then
the computation time for the full likelihood for the n locations is given by xn(n�1)

2
.

Similarly, the computation time for the spatial symbolic likelihood for a 4⇥ 4 (16 boxes) grid
was measured 1000 times, again allowing us to obtain the average time taken for one pairwise
calculation. Estimates of computation times for larger grid divisions can be extrapolated from
these times. The results are given in Figure 16.

53

91/95



Fitting spatial extremes

Figure 17: Red line shows the computation times for the normal symbolic likelihood function
MLE’s by optim for varying number of locations. Horizontal lines show the computation times
for the MLE’s for the spatial symbolic likelihood function.

6 Real data application

Due to the success in analysing rainfall in south-west Western Australia by Li et. al (2005),
we chose a similar dataset from Victoria. However while Li et. al (2005) only fitted marginal
univariate GEV distributions to each individual site, we utilised the Smith Model to fit a mul-
tivariate max-stable model to the data. Furthermore, while they chose 5 locations, we selected
8 sites in Victoria, as shown in Figure 18. A relatively low number of locations was chosen so
that the classical analysis was still possible, allowing comparison with our bivariate histogram
symbolic likelihood function. We set the condition that each location must have no more than
1% missing values, which we assumed to be missing at random. We aggregated the data for
each location into 70 yearly histograms (1931-2000), where each histogram contains the block
maxima for that year with a block size of 20 days. The bins for each histogram were chosen
as equally spaced points between the minimum and maximum values (with a small bu↵er) for
each location.

Each observed value represents a measurement taken at 9 am of the amount of rainfall that fell in
the previous 24 hours. The coordinates of each location were standardised over a [0, 10]⇥ [0, 10]
region so as to prevent numerical errors that may be caused in the estimation of the trend GEV
paramaters due to the latitudes and longitudes of each coordinate being very close together. We
used the same conjugate gradient methods as the simulations to obtain estimates for the MLE’s
for each parameter for varying values of k, i.e. a k⇥k bivariate histogram for every pair of loca-
tions. Optimisation was performed sequentially three times, with each optimisation increasing
the tolerance parameter by a factor of 10 and starting from the optimal parameter values cal-
culated by the previous optimisation. The starting parameter values for the first optimisation
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I Method will be more efficient than standard at some point.

I Currently not so favourable due to numerical integration (working
on that!) 92/95



Fitting spatial extremes

Figure 13: Plots of the gradients for the parameter vector for varying values of k
for the Smith model (top) and the Schlather model (bottom) and also the classical
data points (dotted red line), evaluated at the actual parameter values. The param-
eter values used for the Smith model were (�11, �12, �22, �µ0, �µ1, �µ2, ��0, ��1, ��2, ⇠) were
(50, 20, 50, 2,�0.013, 0.01, 2.5, 0.05, 0.14, 0.1). The parameter values used for the Schlather
model were (c1, c2, v, �µ0, �µ1, �µ2, ��0, ��1, ��2, ⇠) were (0.6, 0.3, 1, 3, 0.3, 0.05, 5, 0.02, 0.44, 0.8).

49

I Smith model with covariate dependent parameters

I Approaches true parameters as bin size shrinks
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Fitting spatial extremes

Figure 13: Plots of the gradients for the parameter vector for varying values of k
for the Smith model (top) and the Schlather model (bottom) and also the classical
data points (dotted red line), evaluated at the actual parameter values. The param-
eter values used for the Smith model were (�11, �12, �22, �µ0, �µ1, �µ2, ��0, ��1, ��2, ⇠) were
(50, 20, 50, 2,�0.013, 0.01, 2.5, 0.05, 0.14, 0.1). The parameter values used for the Schlather
model were (c1, c2, v, �µ0, �µ1, �µ2, ��0, ��1, ��2, ⇠) were (0.6, 0.3, 1, 3, 0.3, 0.05, 5, 0.02, 0.44, 0.8).

49

I Schlather model with covariate dependent parameters

I Approaches true parameters as bin size shrinks
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Talk Outline

Phew! What a (relief this talk is over)!

THANK YOU!

95/95


