

ACEMS

THE UNIVERSITY OF NEW SOUTH WALES
Australian Centre of Excellence for Mathematical and Statistical Frontiers in Big Data, Big Models, New Insights

Phew what a scorcher!

A short introduction to modelling extremes

Scott A. Sisson, Boris Beranger, Seth Westra, Tom Whitaker

UNSW Sydney \& ACEMS
Bayes on the Beach 2017, Nov 13-15 2017, Gold Coast

Talk Outline

1. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

2. Multivariate extremes
3. Spatial extremes
4. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Talk Outline

1. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

2. Multivariate extremes
3. Spatial extremes
4. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Univariate extremes - block maxima

Central limit theorem:

- Suppose $X_{1}, X_{2}, \ldots \sim F\left(\mu, \sigma^{2}\right)$ (i.i.d.)
- $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$
- Then as $n \rightarrow \infty$ the distribution of \bar{X}_{n} is $N\left(\mu, \frac{\sigma^{2}}{n}\right)$
- Useful for modelling means of processes
- Asymptotic distribution depends on μ and σ^{2} but not on form of F.

Distribution of block maxima

- Suppose $X_{1}, X_{2}, \ldots \sim F$ (i.i.d.)
- $M_{n}=\max \left\{X_{1}+\ldots+X_{n}\right\}$
- What is the distribution of M_{n} ?
- For finite n ?
- For $n \rightarrow \infty$?
- Useful for modelling extreme of processes

Univariate extremes - block maxima

What is the distribution of M_{n} - for finite n ? (1st year exercise!)

$$
\begin{aligned}
F\left(M_{n}\right)=\operatorname{Pr}\left(M_{n} \leq x\right) & =\operatorname{Pr}\left(\max \left\{X_{1}+\ldots+X_{n}\right\} \leq x\right) \\
& =\operatorname{Pr}\left(X_{1} \leq x, \ldots, X_{n} \leq x\right) \\
& =\operatorname{Pr}\left(X_{1} \leq x\right) \ldots \operatorname{Pr}\left(X_{n} \leq x\right) \\
& =\operatorname{Pr}(X \leq x)^{n}=F^{n}(x)
\end{aligned}
$$

- So if we know F, we can model M_{n}.
- But what if F is unknown?
- For finite n we are stuck.
- But CLT works for unknown F as $n \rightarrow \infty$
- Can we do something similar for M_{n} as $n \rightarrow \infty$? (Answer = yes!)

Univariate extremes - block maxima

- Set $x_{0}=\sup \{x: F(x)<1\}$
- Then $\operatorname{Pr}\left(M_{n} \leq x_{0}\right)=F^{n}\left(x_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$
- I.e. distribution of M_{n} degenerates to point mass at x_{0}

$N(0,1), n=10$
$\mathrm{N}(0,1), \mathrm{n}=100$

Univariate extremes - block maxima

Central Limit Theorem

- Consider limiting distribution of

$$
\frac{\bar{X}-b_{n}}{a_{n}} \rightarrow N(0,1) \quad\left(X_{i} \sim F\left(\mu, \sigma^{2}\right)\right)
$$

- Limit distribution exists if: $b_{n}=\mu$ and $a_{n}=\sigma / \sqrt{n}$.

Extremes

- Consider limiting distribution of rescaled sample maxima

$$
M_{n}^{*}=\frac{M_{n}-b_{n}}{a_{n}} \rightarrow ? \text { as } n \rightarrow \infty
$$

- i.e. require non-degenerate distribution G and sequences $a_{n}>0, b_{n}$ such that

$$
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=\operatorname{Pr}\left(M_{n} \leq a_{n} x+b_{n}\right)=F^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x)
$$

converges in distribution to G as $n \rightarrow \infty$.

- If it converges then F is in the domain of attraction of G, $F \in D(G)$.

Univariate extremes - block maxima

Extremal Types Theorem

If sequences $a_{n}>0$ and b_{n} exist such that

$$
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right) \rightarrow G(z) \quad \text { as } n \rightarrow \infty
$$

where G is a non-degenerate distribution function, then G belongs to one of the following families:

1. Gumbel:

$$
G(z)=\exp \left\{-\exp \left[-\left(\frac{z-b}{a}\right)\right]\right\} \quad-\infty \leq z \leq \infty
$$

2. Fréchet:

$$
G(z)= \begin{cases}0 & z \leq b \\ \exp \left\{-\left(\frac{z-b}{a}\right)^{-\alpha}\right\} & z>b\end{cases}
$$

3. Weibull:

$$
G(z)= \begin{cases}\exp \left\{-\left[-\left(\frac{z-b}{a}\right)^{\alpha}\right]\right\} & z<b \\ 1 & z \geq b\end{cases}
$$

The precise limiting distribution depends on tail behaviour of F.

Univariate extremes - block maxima

Generalised extreme value (GEV) distribution

$$
G(z)=\exp \left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]_{+}^{-1 / \xi}\right\}
$$

where $(a)_{+}=\max (0, a)$.

- μ, σ, ξ are location, scale, shape parameters
- ξ determines sub-family:
- $\xi \rightarrow 0$: Gumbel
- $\xi>0$: Fréchet
- $\xi<0$: Weibull

GEV is practically useful for modelling (see later).

Univariate extremes - block maxima

Generalized extreme value densities

Outline proof of Extremal Types Theorem is fairly straightforward \Rightarrow

Univariate extremes - block maxima

Definition: Max-stability

A distribution G is max-stable if, for $n=2,3, \ldots$, there are constants $\alpha_{n}>0$ and β_{n} such that

$$
G^{n}\left(\alpha_{n} z+\beta_{n}\right)=G(z) .
$$

- I.e. The maximum of samples drawn from a max-stable distribution come from the same distribution, but with changed location and scale parameters.
- Compare: mean-stable distributions (e.g. Gaussian).

Theorem

A distribution is max-stable iff it is a GEV distribution.

- Easy to check that Gumbel, Fréchet, Weibull are all max-stable.
- Converse is harder (but true).

Univariate extremes - block maxima

Outline Proof of Extremal Types Theorem:

- Suppose that for large n

$$
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right) \approx G(z) .
$$

- Hence for any integer $k \in\{1,2, \ldots\}$, since $n k$ is large

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{M_{n k}-b_{n k}}{a_{n k}} \leq z\right) \approx G(z) . \tag{1}
\end{equation*}
$$

- $M_{n k}$ is max of k variables, each having the same distribution as M_{n}.

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{M_{n k}-b_{n}}{a_{n}} \leq z\right)=\left[\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right)\right]^{k} \tag{2}
\end{equation*}
$$

- From (1) and (2) respectively we have

$$
\operatorname{Pr}\left(M_{n k} \leq z\right) \approx G\left(\frac{z-b_{n k}}{a_{n k}}\right) \text { and } \operatorname{Pr}\left(M_{n k} \leq z\right) \approx G^{k}\left(\frac{z-b_{n}}{a_{n}}\right) .
$$

- G and G^{k} are identical, apart from location/scale parameters. Hence G is max-stable, and therefore GEV.

Univariate extremes - block maxima

Simple examples:
\#1 Exponential(1): $F(x)=1-e^{-x}$ for $x>0$.

- Let $a_{n}=1$ and $b_{n}=\log n$.
- Then

$$
\begin{aligned}
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right) & =F^{n}(z+\log n) \\
& =\left(1-e^{-(z+\log n)}\right)^{n} \\
& =\left(1-e^{-z / n}\right)^{n} \\
& \rightarrow \exp \left(-e^{-z}\right) \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

which is Gumbel, with $\xi=0$ in the GEV family.

Univariate extremes - block maxima

$\operatorname{Exp}(1), n=10$

Gumbel, $\mathrm{n}=10$

$\operatorname{Exp}(1), \mathrm{n}=100$

Gumbel, $\mathrm{n}=100$

$\operatorname{Exp}(1), \mathrm{n}=10000$

Gumbel, $\mathrm{n}=10000$

Univariate extremes - block maxima

Simple examples:
\#2 Fréchet(1): $F(x)=\exp (-1 / x)$ for $x>0$.

- Let $a_{n}=n$ and $b_{n}=0$.
- Then

$$
\begin{aligned}
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right) & =F^{n}(n z) \\
& =[\exp (-1 /(n z))]^{n} \\
& =\exp (-1 / z) \quad \text { for any } n .
\end{aligned}
$$

which is again standard Fréchet ($\xi=1$ in the GEV family).

Clearly demonstrates the max-stable property of Fréchet distributions!

Univariate extremes - block maxima

Frechet(1), $\mathrm{n}=100$
Frechet(1), n=10000

Frechet, $\mathrm{n}=10$

Frechet, $\mathrm{n}=100$

Frechet, $\mathrm{n}=10000$

- Spot the heavy tail!

Univariate extremes - block maxima

Simple examples:
\#3 Uniform(0,1): $F(x)=x$ for $0 \leq x \leq 1$.

- Let $a_{n}=1 / n$ and $b_{n}=1$.
- Hence $\left(M_{n}-b_{n}\right) / a_{n} \leq 0$
- Then

$$
\begin{aligned}
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right) & =F^{n}(z / n+1) \quad(\text { for } z<0) \\
& =\left(1+\frac{z}{n}\right)^{n} \\
& \rightarrow e^{z} \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which is Weibull (finite upper end point), with $\xi=-1$ in the GEV family.

Univariate extremes - block maxima

$\mathbf{U (0 , 1)}, \mathrm{n}=10$

Weibull, $\mathrm{n}=10$

$\mathbf{U (0 , 1)}, \mathrm{n}=100$

Weibull, $\mathrm{n}=100$

$\mathbf{U (0 , 1)}, \mathrm{n}=10000$

Weibull, $\mathrm{n}=10000$

Univariate extremes - block maxima

Comments:

- Choice of a_{n} and b_{n} is not unique.
- Different choices (that lead to non-degenerate limits) are always in the GEV family with the same ξ parameter (it is just a location/scale shift).
- But with different location and scale parameters.

New Questions:

- How do we know the domain of attraction for a given F ?
- How can we find a_{n} and b_{n} ?

Answers:

- Could fill books on this (and people have!)
- I'll give outline sketch for a particular simple class.

Univariate extremes - block maxima

- Distribution of sample maxima depends on tail behaviour of F.
- Consider a particular form of tail behaviour:

Von Mises function

A distribution F with right end point x_{0} is a Von Mises function if there exists a $z_{0}<x_{0}$ such that

$$
1-F(x)=c \exp \left\{-\int_{z_{0}}^{x} \frac{1}{f(u)} d u\right\} \quad \text { for } x>z_{0}
$$

with $c>0$. Here $f(u)>0$ is an auxiliary function.

Result:

If F is a Von Mises function, then $F \in D$ (Gumbel).
Also: $a_{n}=f\left(b_{n}\right)$ and $1-F\left(b_{n}\right)=1 / n$.

Univariate extremes - block maxima

Helpful result

Suppose F is absolutely continuous with negative second derivative $F^{\prime \prime}$ for all $x \in\left(z_{0}, x_{0}\right)$. Then if

$$
\lim _{x \rightarrow x_{0}} \frac{F^{\prime \prime}(x)(1-F(x))}{\left(F^{\prime}(x)\right)^{2}}=-1
$$

then F is a Von Mises function, and $f(x)=(1-F(x)) / F^{\prime}(x)$.

This means that if the above holds:

- we know the limit distribution is Gumbel
- we know how to calculate the normalising constants.

Univariate extremes - block maxima

Example: $F(x)=\Phi(x)$ (Gaussian)

- $F^{\prime}(x)=\phi(x)$
- $F^{\prime \prime}(x)=-x \phi(x)$

$$
\lim _{x \rightarrow \infty} \frac{(1-F(x)) F^{\prime \prime}(x)}{\left(F^{\prime}(x)\right)^{2}}=\lim _{x \rightarrow \infty} \frac{-x^{-1} \phi(x) x \phi(x)}{(\phi(x))^{2}}=-1
$$

and so F is Von Mises and $F \in D$ (Gumbel).

$$
f(x)=\frac{1-F(x)}{F^{\prime}(x)}=\frac{1-\Phi(x)}{\phi(x)} \sim \frac{x^{-1} \phi(x)}{\phi(x)}=\frac{1}{x}
$$

for large x (Mill's ratio).

- Finally (and after a bit of work ...)
- $a_{n}=(2 \log n)^{-1 / 2}$
- $b_{n}=(2 \log n)^{1 / 2}-1 / 2(\log \log n+\log 4 \pi) /(2 \log n)^{1 / 2}$

Univariate extremes - block maxima

Gumbel, $\mathrm{n}=10$

$N(0,1), n=100$

Gumbel, $\mathrm{n}=100$

$N(0,1), n=10000$

Gumbel, $\mathrm{n}=10000$

Normal convergence to Gumbel is quite slow.

Talk Outline

1. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

2. Multivariate extremes
3. Spatial extremes
4. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Univariate extremes - block maxima

Port Pirie annual maximum sea levels

- Annual (daily) maximum sea-levels at Port Pirie (north of Adelaide), 1923-1987.
- Sea defences: what is the maximum (daily) sea-level we can expect to see in the next 100 years? 1000 years?
- Empirically $\operatorname{Pr}(X \geq 4.69)=1 / 65$. Need EVT to go beyond this.

Univariate extremes - block maxima

- (asymptotic) GEV fit seems reasonable.
- For predictive inference, use return levels.

Univariate extremes - block maxima

Return levels

- What process level can we expect to be exceeded, on average, once every e.g. 100 years? (E.g. 1 in 100 year storm.)

$$
G(z)=\exp \left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]_{+}^{-1 / \xi}\right\}
$$

Procedure

- Estimate quantile z_{p} associated with tail probability p

$$
G\left(z_{p}\right)=1-p
$$

- E.g. For 100-year storm, $p=0.01$, and

$$
z_{p}= \begin{cases}\mu-\frac{\sigma}{\xi}\left[1-\{-\log (1-p)\}^{-\xi}\right] & \text { for } \xi \neq 0 \\ \mu-\sigma \log \{-\log (1-p)\} & \text { for } \xi=0\end{cases}
$$

- z_{p} is the return level associated with return period $1 / p$.
- E.g. Process can be expected to exceed z_{p}, on average, once every $1 / p$ years.

Univariate extremes - block maxima

Return Level Plot

- E.g. 100 -year return level is $\approx 4.65 \mathrm{~m}$.
- Return period of an $\approx 5 \mathrm{~m}$ event is 1000 years.
- Note: approx. $95 \% \mathrm{Cl}$ for ξ is $(-0.242,0.142)$ suggesting $\xi=0$ is a possibility.
- Would accept likelihood-ratio test for reducing GEV \rightarrow Gumbel

Univariate extremes - block maxima

Probability Plot

Return Level Plot

Quantile Plot

Density Plot

- Slightly improved fit - Gumbel seems a good choice.
- However: only one parameter saved - is this a good thing to do in general?
- Cautionary tale follows...

Univariate extremes - block maxima

- 50 years of annual rainfall maxima at Maiquetia International Airport, Venezuela
- December 1999 storm way off the charts (extensive damage)
- What is return period of this magnitude of storm (without observing it)? I.e. should we have been prepared for it?
- All statistical tests recommend reducing GEV \rightarrow Gumbel.

Univariate extremes - block maxima

- Return period of Dec 1999 storm (410.4 mm)
- GEV: 4280 year event
- Gumbel: 17.6 million year event (in ~ 50 years of data!)
- Do we really believe this?

Perhaps just fit GEV, unless 100\% certain of Gumbel limit.

Talk Outline

1. Motivation
2. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

3. Multivariate extremes
4. Spatial extremes
5. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Univariate extremes - threshold models

- Daily rainfall SW England 1914-1962.
- 17531 daily data points, 49 annual maxima.
- Analysis of annual maxima only seems wasteful.
- Alternative characterisation of extreme = above a high threshold (e.g. $u=30$ gives 152 data points here).

Univariate extremes - threshold models

Theorem

Let $X_{1}, X_{2}, \ldots \sim F$ (i.i.d) and $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$, and that

$$
\operatorname{Pr}\left(M_{n} \leq z\right) \approx G(z \mid \mu, \sigma, \xi) \quad \text { as before. }
$$

Then, for large u, the distribution function of $X-u \mid X>u$ is approximately

$$
H(z)=1-\left(1+\frac{\xi z}{\tilde{\sigma}}\right)_{+}^{-1 / \xi}
$$

where $\tilde{\sigma}=\sigma+\xi(u-\mu)$.

- $H(z)$ is in the Generalised Pareto Distribution (GPD) family.
- Precisely: $H(z)$ is the limit distribution of $X-u \mid X>u$ as $u \rightarrow \infty$.
- GPD parameters are function of GEV parameters.
- Increasing u analogous to increasing n for block maxima.

Take away: If block maxima result holds, can model extreme tail by GPD.

Univariate extremes - threshold models

Outline justification:

- If GEV limit holds then for large n

$$
F^{n}(z) \approx \exp \left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]^{-1 / \xi}\right\}
$$

for some μ, σ, ξ.

- Then

$$
n \log F(x) \approx-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]^{-1 / \xi}
$$

- For large z, a Taylor expansion gives

$$
\log F(z) \approx-[1-F(z)] .
$$

- Substituting gives

$$
1-F(u) \approx \frac{1}{n}\left[1+\xi\left(\frac{u-\mu}{\sigma}\right)\right]^{-1 / \xi}
$$

for large u.

Univariate extremes - threshold models

- For large u and $y>0$ we then have

$$
1-F(u+y) \approx \frac{1}{n}\left[1+\xi\left(\frac{u+y-\mu}{\sigma}\right)\right]^{-1 / \xi}
$$

for large u.

- Immediately we then have

$$
\begin{aligned}
\operatorname{Pr}(X>u+y \mid X>u) & =\frac{\operatorname{Pr}(X>u+y, X>u)}{\operatorname{Pr}(X>u)} \quad(y>0) \\
& \approx \frac{n^{-1}[1+\xi(u+y-u) / \sigma]^{-1 / \xi}}{n^{-1}[1+\xi(u-\mu) / \sigma]^{-1 / \xi}} \\
& =\left[1+\frac{\xi(u+y-\mu) / \sigma}{1+\xi(u-\mu) / \sigma}\right]^{-1 / \xi} \\
& =\left[1+\frac{\xi y}{\tilde{\sigma}}\right]^{-1 / \xi}
\end{aligned}
$$

where $\tilde{\sigma}=\sigma+\xi(u-\mu)$.

Univariate extremes - threshold models

Simple examples (redux):
\#1 Exponential(1): $F(x)=1-e^{-x}$ for $x>0$.

- By direct calculation

$$
\frac{1-F(u+y)}{1-F(u)}=\frac{e^{-(u+y)}}{e^{-u}}=e^{-y} \quad \text { for } y>0
$$

- \Rightarrow threshold exceedances are $G P D(\tilde{\sigma}=0, \xi=0)$ (=exponential).
- Exact result for all $u>0$.

Exponential(1)

GPD fit to exceedances

Univariate extremes - threshold models

Simple examples (redux):
\#2 Fréchet(1): $F(x)=\exp -1 / x$ for $x>0$.

$$
\frac{1-F(u+y)}{1-F(u)}=\frac{1-\exp \left\{-(u+y)^{-1}\right\}}{1-\exp \left(-u^{-1}\right)} \sim\left(1+\frac{y}{u}\right)^{-1}
$$

as $u \rightarrow \infty$.

- \Rightarrow threshold exceedances are $\operatorname{GPD}(\tilde{\sigma}=u, \xi=1)$.

Univariate extremes - threshold models

Simple examples (redux): \#3 Uniform $(0,1): F(x)=x$ for $0 \leq x \leq 1$.

$$
\frac{1-F(u+y)}{1-F(u)}=\frac{1-(u+y)}{1-u}=1-\frac{y}{1-u}
$$

for $0 \leq y \leq 1-u$.

- \Rightarrow threshold exceedances are $G P D(\tilde{\sigma}=1-u, \xi=-1)$.

Univariate extremes - threshold models

Threshold choice

- The GPD is the limiting model as $u \rightarrow \infty$
- In practice two contrasting needs:
- Need to identify large u so that tail of $F \sim G P D$.
- gives unbiased, but imprecise parameter estimates.
- Need u low as possible to maximise data exceeding threshold.
- too low gives precise but biased parameter estimates
- Ideally, lowest possible u so that GPD limit still approximately holds.
- Two simple methods (many complex methods!):
- 1) Mean residual life plot
- 2) Parameter estimates vs threshold plot

Univariate extremes - threshold models

1) Mean-residual life plots:

- If $Y \sim \operatorname{GPD}(\sigma, \xi)$ then

$$
\mathbb{E}[Y]=\frac{\sigma}{1-\xi} \quad \text { for } \xi<1
$$

- For threshold modelling

$$
\mathbb{E}\left[X-u_{0} \mid X>u_{0}\right]=\frac{\sigma_{u_{0}}}{1-\xi} \quad \text { for } \xi<1
$$

- Now if u_{0} is a valid threshold, then any $u>u_{0}$ is also valid.
- Hence (using the original GPD as F and threshold modelling this):

$$
\mathbb{E}[X-u \mid X>u]=\frac{\sigma_{u}}{1-\xi}=\frac{\sigma_{u_{0}}+\xi u}{1-\xi} .
$$

- So for $u>u_{0} \mathbb{E}[X-u \mid X>u]$ is linear in u.
- So plot

$$
u \text { against } \frac{1}{n_{u}} \sum_{i=1}^{n_{u}}\left(x_{(i)}-u\right)
$$

for $u<x_{\max }$. Choose smallest u above which plot is linear.

Univariate extremes - threshold models

- SW England rainfall data
- MRL plot linear after $u=30$ (6 datapoints above $u=60$ so ignore)
- Other values also seem credible.

Univariate extremes - threshold models

- 2) Parameter estimates versus threshold plot
- Nothing much happening here, but no reason to overrule MRL plot $(u=30)$

Univariate extremes - threshold models

Calculation of Return Levels needs a small modification

- If $X-u \sim \operatorname{GPD}(\sigma, \xi)$ then for $x>u$

$$
\operatorname{Pr}(X>x \mid X>u)=\left[1+\xi\left(\frac{x-u}{\sigma}\right)\right]^{-1 / \xi} .
$$

- It follows that

$$
\operatorname{Pr}(X>x)=\operatorname{Pr}(X>x \mid X>u) \operatorname{Pr}(X>u)=\zeta_{u}\left[1+\xi\left(\frac{x-u}{\sigma}\right)\right]^{-1 / \xi}
$$

as $x>u$, where $\zeta_{u}=\operatorname{Pr}(X>u)$.

- Hence, the level x_{m} that is exceeded on average once every m observations is the solution of

$$
\zeta_{u}\left[1+\xi\left(\frac{x-u}{\sigma}\right)\right]^{-1 / \xi}=\frac{1}{m}
$$

Univariate extremes - threshold models

- This gives the m-observation return level as

$$
x_{m}=u+\frac{\sigma}{\xi}\left[\left(m \zeta_{u}\right)^{\xi}-1\right] .
$$

- To get this on a N-year return level scale, write

$$
m=N \times n_{y}
$$

where n_{y} is the number of observations in 1 year (extreme or otherwise).

- Finally, need an estimate of ζ_{u} :
$\hat{\zeta}_{u}=$ proportion of observations above u.

Univariate extremes - threshold models

Return Level Plot

Quantile Plot

Density Plot

- Semi-ok fit in the tails $(u=30)$
- Return levels on annual scale (with $n_{y}=365.25, \hat{\zeta}_{u}=152 / 17531$)

Talk Outline

1. Motivation
2. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

3. Multivariate extremes
4. Spatial extremes
5. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Multivariate extremes

- Interest in extremes of more than one variable
- Daily rainfall vs. daily storm surge in Hawkesbury-Nepean catchment (near Sydney)
- Interest in modelling when both (or one) measurement is extreme.
- There are 4 ways to model multivariate extremes:
- block maxima
- threshold models
- point processes
- conditional modelling (\times - not discussed today)

Multivariate extremes

Method \#1: Block maxima

Similar to univariate case. If sequences $a_{n d}>0, b_{n d}, d=1, \ldots, D$, exist such that there is a non-degenerate limit

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{M_{n 1}-b_{n 1}}{a_{n 1}} \leq z_{1}, \ldots, \frac{M_{n D}-b_{n D}}{a_{n D}} \leq z_{D}\right) \rightarrow G\left(z_{1}, \ldots, z_{D}\right)
$$

then G is a multivariate extreme value distribution (MEVD), and is max-stable.

- Any univariate margin is GEV
- Fact: domains of attraction are preserved under monotone transformations of margins (Resnick, 1987)
- Common to represent MEVD's with unit Fréchet margins Z_{d}

Multivariate extremes

Method \#1: Block maxima

Under unit Fréchet margins, the joint distribution has the form

$$
\operatorname{Pr}\left(Z_{1} \leq z_{1}, \ldots, Z_{D} \leq z_{D}\right)=\exp \left(-V\left(z_{1}, \ldots, z_{D}\right)\right)
$$

where the exponent measure V takes the form

$$
V\left(z_{1}, \ldots, z_{D}\right)=D \int_{\Delta_{D}} \max _{d=1, \ldots, D} \frac{w_{d}}{z_{d}} H(d w)
$$

where

- $\Delta_{D}=\left\{w \in \mathbb{R}_{+}^{D}: w_{1}+\ldots+w_{D}=1\right\}$ is the $D-1$ dimensional simplex
- angular/spectral measure $H(w)$ on Δ_{D} determines the dependence structure
- satisfies moment conditions $\int_{\Delta_{D}} w_{d} H(w)=1 / D$

Multivariate extremes

Method \#1: Block maxima
In principle easy to build parametric models for G

- Assume parametric form for $H(w)$
- must satisfy moment constraints
- not easy to find closed form for G
- Obtain the density $\partial G / \partial z_{1}, \ldots, z_{D}$ to permit inference
- many, many terms due to partial differentiation.
E.g. differentiating $\exp (-V)$ gives

$$
\begin{aligned}
\frac{\partial}{\partial z_{1}} \exp (-V) & =-V_{1} \exp (-V) \\
\frac{\partial^{2}}{\partial z_{1} z_{2}} \exp (-V) & =\left(V_{1} V_{2}-V_{12}\right) \exp (-V) \\
\frac{\partial^{3}}{\partial z_{1} z_{2} z_{3}} \exp (-V) & =\left(-V_{1} V_{2} V_{3}+V_{12} V_{3}+V_{13} V_{2}+V_{23} V_{1}-V_{123}\right) \exp (
\end{aligned}
$$

where V_{i} is partial derivaive with respect to i.
Inference viable for low D only.
Some parametric families have been worked out. Hard in general.
No single parametric form for G (unlike univariate GEV).

Multivariate extremes

Some models (bivariate):

- Logistic model

$$
G(x, y)=\exp \left\{-\left(x^{-1 / \alpha}+y^{-1 / \alpha}\right)^{\alpha}\right\} \quad x>0, y>0
$$

which arises (though not obviously!!) through

$$
\begin{aligned}
& h(w)=\frac{1}{2}\left(\alpha^{-1}-1\right)\{w(1-w)\}^{-1-1 / \alpha}\left\{w^{-1 / \alpha}+(1+w)^{-1 / \alpha}\right\}^{\alpha-2} \\
& \text { on } 0 \leq w \leq 1 .
\end{aligned}
$$

- $\alpha \rightarrow 1$ gives complete independence

$$
G(x, y)=\exp \left\{-\left(x^{-1}+y^{-1}\right)\right\} .
$$

- Smaller $\alpha \rightarrow 0$ is increasing dependence
- One parameter for D-dimensional dependence.

Multivariate extremes

Some other models (bivariate):

- negative logistic
- bilogistic
- negative bilogistic
- dirichlet (multivariate)

Note: There are not many parametric families for which $h(w)$ can be defined, which satisfies the moment conditions, and for which G has closed form ...

Multivariate extremes

- Annual sea level maxima in Dover \& Harwich, 1912-1992.
- Missing data: Dover (9), Harwich (30), both (3).
- Outlier = large storm passing over SE Britain on 1st February 1953.
- Model linear trend in μ in both margins.
- $\hat{\alpha}=0.70283$ (0.09551) so some dependence.

Multivariate extremes

- Annual maxima is very wasteful of data.
- Highly likely $\left(M_{n 1}, \ldots, M_{n D}\right)$ is not an observed event!
- Other approaches are more common.

Multivariate extremes

- Other multivariate EVT methods define "extreme" by some kind of threshold
- Method \#2: threshold models
- Method \#3: point process
- Method \#4: conditional modelling ($\times-$ not discussed today)
- Better use of data (but other trade-offs)

Multivariate extremes

- Data $\left(X_{1}, \ldots, X_{D}\right) \sim F\left(X_{1}, \ldots, X_{D}\right)$.
- For each margin d, assume $X_{d}-u_{d} \mid X_{d}>u_{d} \sim G P D$
- Transform to unit Fréchet margins above $u: X_{d} \rightarrow \tilde{X}_{d}$. $\Rightarrow \tilde{F}\left(\tilde{X}_{1}, \ldots, \tilde{X}_{D}\right)$ is approx Fréchet(1) above u (and something else below u).
- For large n (and above u):

$$
\begin{aligned}
\tilde{F}\left(\tilde{X}_{1}, \ldots, \tilde{X}_{D}\right) & =\left[\tilde{F}^{n}\left(\tilde{X}_{1}, \ldots, \tilde{X}_{D}\right)\right]^{1 / n} \\
& \approx^{a}\left[\exp \left\{-V\left(\tilde{X}_{1} / n, \ldots, \tilde{X}_{D} / n\right)\right\}\right]^{1 / n} \\
& ={ }^{b} \quad \exp \left\{-V\left(\tilde{X}_{1}, \ldots, \tilde{X}_{D}\right)\right\} .
\end{aligned}
$$

- Finally, as $F\left(X_{1}, \ldots, X_{D}\right)=\tilde{F}\left(\tilde{X}_{1}, \ldots, \tilde{X}_{D}\right)$ then

$$
F\left(X_{1}, \ldots, X_{D}\right) \approx G\left(X_{1}, \ldots, X_{D}\right) \quad \text { above } u
$$

I.e. we can model threshold exceedances using a MEVD.

Multivariate extremes

Figure 5. The Hawkesbury-Nepean catchment near Sydney. The catchment is bounded by red lines. The Fort Denison tide gauge and daily rainfall gauges are, respectively, represented by the yellow square and the black dots. The red triangle shows the river cross section at Spencer.
Modelling joint extreme rainfall (dots) and tide surge (square).

Multivariate extremes

- Uses censored likelihood for marginal and joint exceedances \Rightarrow means this method only good for low D.
- Logistic model
- Extremal dependence (α) weakens as distance from tide gauge increases.
- Doesn't require any joint exceedances (RHS), but will estimate compete independence!

Multivariate extremes

- As threshold-exceedance approach is inefficient, consider reworking extremes as point process
- For bivariate X, Y, with block maxima limit $G(X, Y)$.
- Define sequence of point processes $\left\{N_{n}\right\}$ as

$$
N_{n}=\left\{\left(x_{1} / n, y_{1} / n\right), \ldots,\left(x_{n} / n, y_{n} / n\right)\right\} .
$$

- Then

$$
N_{n} \rightarrow N \quad \text { in distribution as } n \rightarrow \infty,
$$

to a non-homogeneous Poisson process on $(0, \infty)^{2} /\{(0,0)\}$.

- Reparameterising to pseudo-polar $r=x+y, w=x /(x+y)$ gives the intensity function of $\lambda(r, w)=2 \frac{d H(w)}{r^{2}}$
- If we define region $A=\left\{(x, y): r>r_{0}\right\}$ then convergence is guaranteed (away from the origin) and likelihood function is simply

$$
L(\theta \mid w) \propto \prod_{i=1}^{N_{A}} h\left(w_{i} \mid \theta\right), \quad \text { where } w_{i}=x_{i} /\left(x_{i}+y_{i}\right)
$$

Multivariate extremes

Figure 2. Illustration of the spectral density function, $h(w)$, for three data sets generated from the bivariate logistic model with different levels of dependence ($\alpha=0.1,0.5$, and 0.95). (top) Scatterplots of each data set, with extreme events shown in grayed dots. (bottom) Histograms of $w=x /(x+y)$ for the extreme events with superimposed spectral density functions, $h(w)$.

- Illustrations of $h(w)$ capturing extremal dependence.
- Full dependence: $h(w)=\{0.5\}$. Independence: $h(w)=\{0,1\}$.

Multivariate extremes

- Weak dependence (again).
- AIC Logistic (3710), negative logistic (3683).
- Bump: zero rainfall violates Poisson process assumptions. (No-one really knows how to fix this ...)

Talk Outline

1. Motivation
2. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

3. Multivariate extremes
4. Spatial extremes
5. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Spatial extremes

Recall (univariate block maxima):
If sequences $a_{n}>0$ and b_{n} exist such that

$$
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq z\right)=F^{n}\left(a_{n} z+b_{n}\right) \rightarrow G(z) \quad \text { as } n \rightarrow \infty,
$$

then G is a max-stable distribution (and in particular in the GEV family).

- We are interested in modelling extremes spatially, so it is natural to define a suitable process:

Max-stable process
Let T be an index set and $\left\{\tilde{Y}_{i}(t)\right\}_{t \in T}, i=1, \ldots, n$ be n independent realisations of a continuous stochastic process. If there are sequences of continuous random functions $a_{n}(t)>0$ and $b_{n}(t)$ such that

$$
\lim _{n \rightarrow \infty} \frac{\max _{i=1}^{n} \tilde{Y}_{i}(t)-b_{n}(t)}{a_{n}(t)}=Y(t) \quad t \in T,
$$

then $Y(t)$ is a max-stable process.

Spatial extremes

Two properties of the max-stable process:

- For any fixed $t_{0} \in T$, the one-dimensional margin $Y\left(t_{0}\right)$ follows a GEV distribution.
- For any finite K-dimensional set t_{1}, \ldots, t_{K}, the K-dimensional margin $\left(Y\left(t_{1}\right), \ldots, Y\left(t_{K}\right)\right)$ belongs to the class of K-dimensional extreme value distributions.
(Contrast with similarity to Gaussian process.)
- This standardised process $Z(t)$ has unit Fréchet margins.
- If $Z(t)$ is stationary, it can be expressed through its spectral representation.
- A simple, intuitive version of this is known as the storm profile model.

Spatial extremes

Spectral representation (storm process model):

Let $\left\{X_{j}, U_{j}\right\}_{j \geq 1}$ be a Poisson process Λ on $\mathbb{R}^{d} \times \mathbb{R}^{+}$, with counting measure $\Lambda(\cdot):=\sum_{j} \mathbb{I}_{\left(X_{j}, U_{j}\right)}(\cdot)$ and intensity measure $\nu(d x) \times u^{-2} d u$, where $\mathbb{I}_{\left(X_{j}, U_{j}\right)}(A)$ is the indicator function of the random number of points falling in a bounded set $A \subset \mathbb{R}^{d} \times \mathbb{R}^{+}$and ν is a positive measure.

For a non-negative measurable function $f(x-t)$ (for fixed $t \in T$) such that $\int_{\mathbb{R}^{d}} f(x-t) v(d x)=1$, the stochastic process

$$
Z(t):=\max _{j=1,2, \ldots}\left\{U_{j} f\left(X_{j}-t\right)\right\} \quad t \in T
$$

is a (stationary) max-stable process.
Storm profile model interpretation

- $U=$ storm magnitude
- $X=$ storm centre
- $f=$ storm shape

Spatial extremes

- Gaussian storm shape ("Smith" model), with 4 storms
- Need trick to sample max of $n=\infty$ storms.
- Any point is max of i.i.d. scalar process (Fréchet)
- Clear that spatial dependence is induced

Spatial extremes

Figure 1.1: Two simulations of the Smith model with different Σ matrices. Left panel: $\sigma_{11}=\sigma_{22}=9 / 8$ and $\sigma_{12}=0$. Right panel: $\sigma_{11}=\sigma_{22}=9 / 8$ and $\sigma_{12}=1$. The max-stable processes are transformed to unit Gumbel margins for viewing purposes.

- Realisations of Smith model in $D=2$ dimensions.
- Clear spatial and directional dependence (in a Gaussian sense).

Spatial extremes

Figure 1.3: Two simulations of the Schlather model with different correlation functions having approximately the same practical range. Left panel: Whittle-Matérn with $c_{1}=c_{2}=\nu=1$. Right panel: Powered exponential with $c_{1}=\nu=1$ and $c_{2}=1.5$. The max-stable processes are transformed to unit Gumbel margins for viewing purposes.
"Schlather" model based on generalisation of spectral representation

$$
Z(t)=\max _{j}\left[U_{j}(t) \max \left\{0, W_{j}(t)\right\}\right]
$$

where $W(t)$ is a stationary process on $\mathbb{R}^{d}, W_{j}(t)$ are i.i.d replicates, and $\mathbb{E}\left[\max \left\{0, W_{j}(t)\right\}\right]=1$.

- Allows general noise processes (w. geosts. dependence functions)

Spatial extremes

For the storm-profile model, the distribution function of $\left.\left(Z\left(t_{1}\right), \ldots, Z_{(} t_{K}\right)\right)$ is

$$
\operatorname{Pr}\left(Z\left(t_{k}\right) \leq z_{k}, k=1, \ldots, K\right)=\exp \left[-\int_{\mathbb{R}^{d}} \max _{1 \leq k \leq K}\left\{\frac{f\left(x-t_{k}\right)}{z_{k}}\right\} \nu(d x)\right]
$$

which has unit Fréchet margins as $\left(z_{k} \rightarrow \infty\right)$

$$
\operatorname{Pr}\left(Z_{t} \leq z\right)=\exp \left(-\frac{1}{z} \int_{\mathbb{R}^{d}} f(x-t) \nu(d x)\right)=\exp (-1 / z) .
$$

Beyond univariate margins, tractable distribution functions are not really viable for $K \geq 3$.

Spatial extremes

Modelling spatial extremes with the Gaussian (Smith) storm model:

- Two spatial locations t_{i}, t_{j}
- $h=\left(t_{j}-t_{j}\right)^{\top}$
- $a(h)=\left(h^{\top} \Sigma^{-1} h\right)^{1 / 2}$
- Σ is covariance of Gaussian f

$$
\begin{aligned}
& \operatorname{Pr}\left(Z(0) \leq z_{i}, Z(h) \leq z_{j}\right) \\
& =\exp \left[-\frac{1}{z_{i}} \Phi\left(\frac{a(h)}{2}+\frac{1}{a(h)} \log \frac{z_{j}}{z_{i}}\right)-\frac{1}{z_{j}} \Phi\left(\frac{a(h)}{2}+\frac{1}{a(h)} \log \frac{z_{i}}{z_{j}}\right)\right] .
\end{aligned}
$$

- So we can model two spatial locations only with this model.
- For $K \geq 2$ need to use (say) composite likelihoods (Padoan et al., 2010) lots of maths
- Could also use ABC etc.

Spatial extremes

Elevation

- 46 rainfall gauges East USA, with elevation (Appalachian Mount.)
- Fit Gaussian storm max-stable process using CL
- Spatial surfaces for $\mu(t), \sigma(t), \xi(t)$ (GEV margins)

Spatial extremes

Table 5. Some Gaussian extreme value processes and their corresponding maximized negative composite log-likelihood, degrees of freedom, and the CLIC score

Model		$-\ell_{\mathcal{P}}\left(\widehat{\psi}_{\text {MCLE }} ; \mathbf{y}\right)$	df	CLIC
M_{0} :	$\begin{aligned} & \left.\left.\mu(x)=\alpha_{0}+\alpha_{1} \text { (lat }\right)+\alpha_{2} \text { (alt }\right)+\alpha_{3} \text { (lon) } \\ & \left.\left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{2} \text { (alt }\right)+\beta_{2} \text { (lon) } \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,110.5	12	825,679
M_{1} :	$\begin{aligned} & \mu(x)=\alpha_{0}+\alpha_{1}(\text { lat })+\alpha_{2}(\text { alt }) \\ & \left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{2}(\text { alt })+\beta_{3}(\text { lon }) \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,111.7	11	825,526
M_{2} :	$\begin{aligned} & \left.\mu(x)=\alpha_{0}+\alpha_{1}(\text { lat })+\alpha_{2} \text { (alt }\right)+\alpha_{3} \text { (lon) } \\ & \left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{2} \text { (alt) } \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,113.6	11	825,459
M_{3} :	$\begin{aligned} & \mu(x)=\alpha_{0}+\alpha_{1}(\text { lat })+\alpha_{3}(\text { lon }) \\ & \left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{2} \text { (alt) }+\beta_{3} \text { (lon) } \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,234.4	11	825,840
M_{4} :	$\begin{aligned} & \mu(x)=\alpha_{0}+\alpha_{1}(\text { lat })+\alpha_{2}(\text { alt })+\alpha_{3} \text { (lon) } \\ & \left.\left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{3} \text { (lon }\right) \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,380.9	11	826,177
M_{5} :	$\begin{aligned} & \mu(x)=\alpha_{0}+\alpha_{1}(\text { lat })+\alpha_{2}(\text { alt }) \\ & \left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{2} \text { (alt) } \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,113.9	10	825,327
M_{6} :	$\begin{aligned} & \left.\mu(x)=\alpha_{0}+\alpha_{1} \text { (lat }\right) \\ & \left.\lambda(x)=\beta_{0}+\beta_{1} \text { (lat }\right)+\beta_{2} \text { (alt) } \\ & \xi(x)=\gamma_{0} \end{aligned}$	412,314.4	9	825,684

- Model choice using CLIC (Varin \& Vidoni, 2005)
- $\xi(t)$ typically does not change over space (i.e. not enough data to clearly identify variations.)

Spatial extremes

- LHS: Unconditional 50-year return levels
- RHS: 50-year return levels conditional on observing 13 cm magnitude event at *
- Clear altitude and spatial dependence (in direction of mountain range).

Spatial extremes

Figure 9. Goodness-of-fit diagnostics for the fitted model for various subsets of site locations, $K^{\prime} \in\{1, \ldots, K\}$. Panels display quantile plots of observed block-maxima $\tilde{y}_{m}=\max _{k \in K^{\prime}}\left\{y_{m, k}\right\}$ versus means of their respective distributions, obtained by simulation, under the fitted model (10,000 replications). Dashed lines indicate simulation-based 95% confidence envelopes. Top panels: K^{\prime} consisting of three pairs of locations separated by (a) short ($\approx 20 \mathrm{~km}$), (b) medium ($\approx 350 \mathrm{~km}$), and (c) long ($\approx 735 \mathrm{~km}$) distances. Bottom panels: K^{\prime} consisting of (d) the 10 lowest, (e) the 10 highest, and (f) all $K=46$ sites.

- Always perform goodness-of-fit checks!

Talk Outline

1. Motivation
2. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

3. Multivariate extremes
4. Spatial extremes
5. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

The production of clean steels

Stereological extremes:

- Inclusions (impurities) degrade quality of steel
- Strength related to largest inclusion size
- 2D slice taken from 3D block
- Distribution of size of largest inclusion?
- EVT twist on Wicksell's corpsucle problem
- Inference on distribution of radii of 3D spheres based on 2D slice
- We want distribution of largest inclusions
- Spherical or ellipsoidal inclusions

The production of clean steels

Extremes model

- Point process for inclusion centres, rate λ
- Location-independent inclusion diameters
- Inclusion diameters $\left(V-v_{0}\right) \mid V>v_{0} \sim G P D(\sigma, \xi)$
- Model for observed 2D diameters $D=g(V)$
- Computationally tractable (just) for spherical inclusions
- Impractical for ellipsoidal inclusions
- Can use Approximate Bayesian Computation (ABC)
- Bortot et al (2007) use order statistics $S=\left(D_{(1)}, \ldots, D_{(n)}, n\right)$ where $n_{\text {obs }}=112$.
- Fan et al (2013) use 3 "Fearnhead \& Prangle" statistics.

ABC - 1 slide recap

The basic mechanism:

- Draw samples $\left(\theta_{1}, x_{1}\right),\left(\theta_{2}, x_{2}\right), \ldots,\left(\theta_{N}, x_{N}\right)$ from $\pi(\theta, x)=\pi(x \mid \theta) \pi(\theta)$
- x_{k} is simulated data from the likelihood with parameter θ_{k}
- Look at marginal distribution of $\pi(\theta \mid x \approx y)$
- If x is "close enough" to y then $\pi(\theta \mid x \approx y) \approx \pi(\theta \mid y)$

Dimension reduction:

- Condition $x \approx y$ is very unlikely (imagine high-dimensional time series, or high-resolution image)
- Reduce data to summary statistics $s_{x}=S(x)$
- Idea is then:
- Draw samples from $\pi(\theta, x) \Rightarrow \pi\left(\theta, s_{x}\right)$
- Look at the marginal distribution of $\pi\left(\theta \mid s_{x} \approx s_{y}\right) \approx \pi\left(\theta \mid s_{y}\right)$

Note: If s_{y} are sufficient statistics, then $\pi\left(\theta \mid s_{y}\right) \equiv \pi(\theta \mid y)$, otherwise some loss of information.

Stereological extremes: variance inflation

Verification via comparison with MCMC output for spherical model

$\sigma \mid(\epsilon<50)$

$$
\lambda \mid(\epsilon<50)
$$

Stereological extremes

Different results under ellipsoidal model

FIGURE 6. Solid curve shows posterior mean of rate of inclusions exceeding a threshold u as a function of u under the ellipsoidal model assumption. The broken curves are pointwise 95% credibility interval limits of the same quantity. The dotted curve shows the marginal mean of the same quantity under the spherical inclusion model

Talk Outline

1. Motivation
2. Univariate extremes

- Block maxima results
- Block maxima practice
- Threshold models

3. Multivariate extremes
4. Spatial extremes
5. Extras

- Stereological extremes (ABC)
- Big data extremes (SDA)

Fitting a GEV (review)

Suppose $x_{1}, \ldots, x_{n} \sim \operatorname{GEV}(\mu, \sigma, \xi)$ for large n. Create histogram of counts $s=\left(s_{1}, \ldots, s_{B}\right)$.
Symbolic log-likelihood function is then

Fitting multivariate extremes

Exactly the same as before:

Have $x_{1}, \ldots, x_{n} \sim \mathrm{f}(x \mid \theta)$ for large n where $x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{p}\right)^{\top} \in \mathbb{R}^{p}$.
Create multivariate histogram of counts $s=\left(s_{1}, \ldots, s_{B}\right)$ over \mathbb{R}^{p}.
Symbolic log-likelihood function is then

$$
\ell(s \mid \theta) \propto \sum_{b=1}^{B} s_{b} \log \left[\int_{D_{b}} f(z \mid \theta) d z\right]
$$

Comments:

- Multivariate histograms become inefficient as p gets large (leading to other symbol types ...)
- Constructing histograms more difficult for large n, p (map-reduce)
- E.g. for bivariate models

$$
\begin{aligned}
& \int_{D_{b}} f(z \mid \theta) d z=F\left(b_{1}, b_{2} \mid \theta\right)-F\left(a_{1}, b_{2} \mid \theta\right)-F\left(b_{1}, a_{2} \mid \theta\right)+F\left(a_{1}, a_{2} \mid \theta\right) \\
& \text { where } \operatorname{bin} D_{b}=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]
\end{aligned}
$$

- So 2^{p} terms in integral - only practical for moderate p.

Fitting multivariate extremes

Example

- Data from spatial max-stable process ("Smith" model)
- Construct composite pairwise likelihood $\ell_{C}=\sum_{i \neq j} \ell\left(x_{i}, x_{j} \mid \theta\right)$
- Each $\ell\left(x_{i}, x_{j} \mid \theta\right)$ follows bivariate extremes model
- Look at bivariate histogram for each $\ell\left(x_{i}, x_{j}\right)$ (avoids high-D histogram problems)

Fitting multivariate extremes

\# Bins	σ_{11}	σ_{12}	σ_{22}	μ	σ	ξ
2	$149.3(191.4)$	$53.9(41.9)$	$321.1(286.9)$	$21.888(41.37)$	$5.804(5.93)$	$0.392(0.08)$
3	$122.3(163.6)$	$53.3(37.6)$	$265.3(252.3)$	$7.969(20.68)$	$2.478(2.64)$	$0.207(0.12)$
4	$125.1(160.5)$	$49.4(35.5)$	$243.8(250.5)$	$1.987(2.94)$	$1.876(2.09)$	$0.140(0.10)$
5	$121.7(185.8)$	$41.3(119.6)$	$236.1(245.4)$	$1.676(2.78)$	$2.056(2.26)$	$0.105(0.10)$
7	$119.3(155.3)$	$39.6(86.6)$	$229.3(236.4)$	$1.545(3.09)$	$1.525(2.36)$	$0.071(0.08)$
10	$114.4(159.2)$	$38.3(61.8)$	$191.7(223.1)$	$1.580(4.01)$	$1.458(3.18)$	$0.047(0.07)$
classical	$98.9(81.1)$	$31.8(12.9)$	$153.6(222.6)$	$0.064(0.01)$	$0.131(0.01)$	$0.0025(0.02)$

\# Bins	σ_{11}	σ_{12}	σ_{22}	μ	σ	ξ
2	$51.4(60.2)$	$25.3(20.2)$	$71.3(67.4)$	$7.922(5.23)$	$4.838(2.19)$	$0.289(0.06)$
4	$48.3(71.4)$	$26.2(17.3)$	$65.8(74.2)$	$0.618(1.21)$	$1.320(1.98)$	$0.045(0.05)$
7	$44.7(35.5)$	$22.6(26.9)$	$45.4(50.1)$	$0.445(0.95)$	$1.791(2.10)$	$0.010(0.02)$
10	$38.4(38.1)$	$19.4(19.3)$	$43.6(38.8)$	$0.473(0.80)$	$0.318(1.03)$	$0.003(0.01)$
classical	$30.2(20.4)$	$12.9(9.8)$	$38.9(22.1)$	$0.057(0.01)$	$0.094(0.008)$	$0.0008(0.005)$

Table 7: Histogram mean MSE of the constrOptim calculated MLE for each parameter in the Smith model, with associated standard error in brackets. The parameter values of $\left(\sigma_{11}, \sigma_{12}, \sigma_{22}, \mu, \sigma, \xi\right)$ used to generate each dataset were $(200,120,150,4,6,1)$. The top table was from 5 locations, while the bottom table was from 10 locations.

- Same performance as before
- Dependence parameters a function of \# of spatial locations (obv.)
- Need more than 10 bins for acceptable accuracy. Concept ok tho.

Fitting spatial extremes

- Suppose we also have an arbitrarily large number of spatial locations
- Standard: Composite likelihood term $L\left(x_{i}, x_{j} \mid \theta, L_{i}, L_{j}\right)$ for each location pair $\left(L_{i}, L_{j}\right)$
- \# pairs (or triples or ...) in composite likelihood would explode

50 locations aggregated into a 10×10 grid

Alternatively:
Consider likelihood where location is binned

Any locations in same bin are considered the same location.

Rather than very many likelihood contributions $L\left(x_{i}, x_{j} \mid \theta, L_{i}, L_{j}\right)$ we have (loosely)
$\left[\int_{\tilde{D}_{j}} \int_{\tilde{D}_{i}} L\left(x_{i}, x_{j} \mid \theta, L_{i}, L_{j}\right) d L_{i} d L_{j}\right]$
for bins \tilde{D}_{i} and \tilde{D}_{j}
evaluated for pooled histogram
data.

Fitting spatial extremes

- So replace likelihoods of pointwise pairs $L_{i}, L_{j}(n(n-1) / 2=$ huge! $)$ with bin pairs $\tilde{D}_{i}, \tilde{D}_{j}$ (far less \& controllable)
- And replace pairwise symbolic likelihood (based on bivariate histograms):

$$
\int_{D} f\left(z \mid \theta, L_{i}, L_{j}\right) d z=F\left(b_{1}, b_{2} \mid \theta\right)-F\left(a_{1}, b_{2} \mid \theta\right)-F\left(b_{1}, a_{2} \mid \theta\right)+F\left(a_{1}, a_{2} \mid \theta\right)
$$

with

$$
\int_{\tilde{D}_{j}} \int_{\tilde{D}_{i}} \int_{D} f\left(z \mid \theta, L_{i}, L_{j}\right) d z d L_{i} d L_{j}
$$

- So binning data over time ($d z$) and space $\left(d L_{j}, d L_{i}\right)$.
- Note 1: pool the $n_{i j}$ histograms of combined locations $\ell($ combined $)=\prod_{i j} \ell_{i j}\left(L_{i}, L_{j}\right)$
- Note 2: need to be able to do integration fast.

Fitting spatial extremes

Comments (positives):

50 locations aggregated into a 10×10 grid

For $b \times b$ grid no need to compute all $b(b-1) / 2$ combinations of grid-pairs.

If e.g. isotropic dependence (depending only on distance)
e.g. $(1,1) \leftrightarrow(1,3)$ has same dependence as $(1,2) \leftrightarrow(1,3)$ and $(1,1) \leftrightarrow(3,1)$

So can pool the bivariate

 histograms\# Unique patterns depends on grid, not number of spatial locations.

- As before: as bin sizes shrink in time and space, recover exact composite likelihood approach (e.g. Padon et al, 2010)

Fitting spatial extremes

Comments (negative/neutrals):

- Need to do the 4-dimensional integral many times:

$$
\int_{\tilde{D}_{j}} \int_{\tilde{D}_{i}} \int_{D} f(z \mid \theta) d z d L_{i} d L_{j}
$$

a) different locations L_{i}, L_{j}, b) different 2 d data bins D.

- E.g. Smith:

$$
F(z \mid \theta)=\exp \left(-\frac{1}{z_{i}} \Phi\left(\frac{a}{2}+\frac{1}{a} \log \frac{z_{j}}{z_{i}}\right)-\frac{1}{z_{j}} \Phi\left(\frac{a}{2}+\frac{1}{a} \log \frac{z_{j}}{z_{i}}\right)\right)
$$

where $a^{2}=\left(L_{i}-L_{j}\right)^{\top} \Sigma^{-1}\left(L_{i}-L_{j}\right)$. Or Schlather geostat models etc.

- Integrating over $z=\left(z_{i}, z_{j}\right)^{\top}$ is easy as $\operatorname{cdf} F(z \mid \theta)$ is known
- Not sure how to do space $\left(L_{i}, L_{j}\right)$ yet.
- Currently using numerical method but too slow. Needs faster method. (In progress!)

Fitting spatial extremes

Fitting spatial extremes

Time taken to calculate MLE

- Method will be more efficient than standard at some point.
- Currently not so favourable due to numerical integration (working on that!)

Fitting spatial extremes

- Smith model with covariate dependent parameters
- Approaches true parameters as bin size shrinks

Fitting spatial extremes

- Schlather model with covariate dependent parameters
- Approaches true parameters as bin size shrinks

Talk Outline

