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Introduction

In multivariate survival analysis there may be a natural association because individuals share biological
and/or environmental conditions.
Examples:
• Lifetimes of pairs of human organs (eg kidneys, eyes)
• Recurrent events: (i) asthma attacks for a subject, (ii) the first and second infection from the inser-
tion of the catheter in subjects using a portable dialysis equipment
• Clustered failure times such as failure times of twins

ê The assumption of independence among lifetimes can be unrealistic.
ê It is of interest to estimate and quantify the dependence among the lifetimes and the effects of
covariates under the dependence structure.

Diabetic Retinopathy Study: Follow up times for 197 diabetic patients. The main endpoint is severe
visual loss in each eye. Treatment was randomly assigned to one eye of each patient.
T1: the time up to visual loss for the treatment eye, (73% cen.), T2: time up to visual loss for the control
eye, (49% cen.), covariate age, 1: adult, 0: young (58% young).
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Figure 1: Scatterplot Diabetic retinopathy data

ê It might be natural to assume the dependence between the lifetimes is not constant through time.
• Time-varying copula models allow parameter estimates to vary over time and therefore obtain a
dynamic structure of the dependence between bivariate lifetimes.
• Copulas considering time varying dependence structure mainly analysing multivariate times series
in finance, see e.g. Van den Goorbergh, Genest & Werker (2005) and the references of them. Also,
see Abbara & Zevallos (2014). From a Bayesian approach, see Ausin & Lopes (2010).
• Dynamic frailty models: a Bayesian time-dependent frailty model in Manda & Meyer (2005), and
Pennell & Dunson (2006).

ê In this work we propose a bivariate model where the dependence structure is carry out temporally
through a time-varying copula function, allowing to the dependence parameter to vary over time.
ê We use the temporal factorization of the likelihood function following Gamerman (1991) and a
two-steps estimation procedure.

Copulas

Let T1, T2 r.v.’s with Tj ∼ Fj, j = 1, 2, the joint cdf can be written as F (t1, t2) = CFα (F1(t1), F2(t2)), α ∈
A, with joint pdf f (t1, t2) = cFα (F1(t1), F2(t2))

∏2
j=1 fj(tj). Also, the joint survival function is given by

S(t1, t2) = Cα(S1(t1), S2(t2)) where Sj(·) = 1− Fj(·).

• Clayton: Cα(S1(t1), S(t2)) =
(
S1(t1)

−α + S2(t2)
−α − 1

)1/α
, α ∈ IR+

• Positive stable: Cα(S1(t1), S2(t2)) = exp
{
−
[
(− log(S1(t1)))

1/α + (− log(S2(t2)))
1/α
]α}

, α ∈ [0, 1]

Estimation - Two steps

Let (T1, T2) bivariate lifetime r.v.’s with survival functions (S1, S2) and pdf (f1, f2). Let (C1, C2) bivariate
censoring times. For i, . . . , n, suppose (Ti1, Ti2) and (Ci1, Ci2) independents. For each i we observe
Zij = min(Tij, Cij) and δij = I [Zij = Tij], j = 1, 2.

ê Step 1: Estimation of Marginals. Piecewise exponential model (PE), Tj|λj ∼ PE(λj), j = 1, 2.

Suppose T1|λ1 ⊥⊥ T2|λ2 and the partition 0 = a0 < a1 < · · · < aK−1 < aK =∞, so that on the interval
Ik = (ak−1, ak] the hazard function is h(tj) = λ

j
k, ak−1 ≤ tj < ak.

We consider λj ∼ AR(1)Gamma. Thus, the joint prior density of λj is

π(λj) = π(λ
j
k|λ

j
k−1) · π(λ

j
k−1|λ

j
k−2) · · · π(λ

j
2|λ

j
1) · π(λ

j
1)

with λjk|λ
j
k−1 ∼ Gamma

(
c, c
λjk−1

)
, k = 2, . . . , K, and λj1 ∼ Gamma(c, c)

Then we obtain λ̂
j

from the posterior π(λj|zj, δj) ∝ L(λj|zj, δj)π(λj). The likelihood function is
expressed in terms of a temporal factorization (Gamerman, 1991)

L(λj|zj, δj) =
K∏
k=1

Lk

(
(zj, δj)

(k)|λj, Dj
k−1

)
,

where Dj
k is the information set with the observed information of each individual until ak−1 and

Lk

(
(zj, δj)

(k)|λj, Dj
k−1

)
=

n∏
i=1

fj(zij|λj, D
j
k−1)

δijSj(zij|λj, D
j
k−1)

1−δij

ê Step 2: Estimation of temporal dependence. Interested in estimating α = (α1, . . . , αK) into each

interval. Given λ̂
j
, the pseudo-likelihood function is

L(α|Z, δ, λ̂1, λ̂2) =
K∏
k=1

Lk

(
(Z, δ)(k)|α, Dk−1

)
where the likelihood in the Ik interval in terms of the copula is

Lk

(
(Z, δ)(k)|α, Dk−1

)
=

n∏
i=1

[cαk(Ŝ1(zi1k), Ŝ2(zi2k))]
δi1kδi2k ·

[
∂Cαk(Ŝ1(zi1k),Ŝ2(zi2k))

∂S1(zi1k)

]δi1k(1−δi2k)
·
[
∂Cαk(Ŝ1(zi1k),Ŝ2(zi2k))

∂S2(zi2k)

](1−δi1k)δi2k
Cαk(Ŝ1(zi1k), Ŝ2(zi2k))

(1−δi1k)(1−δi2k),

where Ŝj(·) = Sj(·|λ̂
j
) is the estimate survival function from Step 1.

The estimation of α is based on the ‘posterior distribution’

π(α|Z, δ, λ̂1, λ̂2) ∝
K∏
k=1

Lk

(
(Z, δ)(k)|α, Dk−1

)
π(α)

Application - Diabetic Retinopathy Study

Step 1: K = 8 and same number of events in each Ik.

• T1|λ1 ∼ PE(λ1), λ1k|λ
1
k−1 ∼ AR(1)Gamma(3.4, 3,4

λ1k−1
), λ11 ∼ Gamma(3.4, 3.4)

• T2|λ2 ∼ PE(λ2), λ2k|λ
2
k−1 ∼ AR(1)Gamma(3.5, 3,5

λ2k−1
), λ21 ∼ Gamma(3.5, 3.5)

Figure 2: Estimated survival function for T1 and T2, PE model

Step 2: The estimates from Step 1 are replaced into the temporal pseudo-likelihood of the dynamic
copula model to obtain the posterior distribution of α

π(α|Z, δ, λ̂1, λ̂2) ∝
K∏
k=1

Lk

(
(Z, δ)(k)|α, Dk−1

)
π(α)

Prior distribution for α in the Clayton copula:

αk|αk−1 ∼ AR(1)Gamma
(
b,

b

αk−1

)
, k = 2, . . . , 8, α1|b ∼ Gamma(d, d), d ∼ Gamma(0.01, 0.01)

Prior distribution for α in the Positive stable copula:

αk|αk−1 ∼ AR(1)Beta(b · αk−1, b · (1− αk−1)), k = 2, . . . , 8, α1|b ∼ Beta(d, d), d ∼ Gamma(0.01, 0.01)

Model selection criteria:
Copula AIC BIC DIC
Clayton 11160.7 11186.9 11150.4

Positive stable 11873.0 11899.3 11863.2
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Figure 3: Temporal dependence ταk - Clayton copula

ê Interpretation: On the first months failure times are moderately dependent, then treatment be-
comes effective, and by the end of study (6 years) the disease returns due to abnormal blood vessels
growth.

Discussion and future work

• Flexibility of models based on copulas: dependence structure and marginals distributions

• Dependence can vary over time in real situations

• Future work: Simulation study, joint estimation procedure, . . .
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