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Overview

Goal: posterior inference on unknown θ :

p(θ|y) ∝ p(y|θ)p(θ)
When the DGP p(y|θ) is intractable:
i.e. either (parts of) the DGP unavailable in closed form:

Continuous time models (unknown transitions)
Gibbs random fields (unknown integrating constant);
α−stable distributions (density function unavailable)

Or dimension of θ so large:

Coalescent trees
Large-scale discrete choice models

that exploration/marginalization infeasible via exact methods:

Can/must resort to approximate inference
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Approximate Methods

Goal then is to produce an approximation to p(θ|y):

Approximate Bayesian computation (ABC)

Synthetic Likelihood

Variational Bayes

Integrated nested Laplace (INLA)

ABC particularly prominent in genetics, epidemiology,
evolutionary biology, ecology

Where move away from exact Bayesian inference also motivated
by certain features of their problems
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Approximate Bayesian Computation (ABC)

Whilst p(y|θ) is intractable

p(y|θ) (and p(θ)) can be simulated from

ABC requires only this feature

to produce a simulation-based estimate of an
approximation to p(θ|y)

(Recent reviews: Marin et al. 2011; Sisson and Fan, 2011;
Robert, 2015; Drovandi, 2017)
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Basic ABC Algorithm - Reiterating!

Aim is to produce draws from an approximation to p(θ|y)

and use draws to estimate that approximation

The simplest (accept/reject) form of the algorithm:

1 Simulate (θi ), i = 1, 2, ...,N, from p(θ)
2 Simulate psuedo-data zi , i = 1, 2, ...,N, from p(z|θi )
3 Select (θi ) such that:

d{η(y), η(zi )} ≤ ε

η(.) is a (vector) summary statistic
d{.} is a distance criterion
the tolerance ε is arbitrarily small
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Extensions......

1. Modification of the basic algorithm
1 Using different kernels from the indicator kernel:

I
[
d{η(y), η(zi )} ≤ ε

]
to give higher weight to those draws, θi , that produce η(zi ) close
to η(y)

2 Inserting MCMC or sequential Monte Carlo (SMC) steps to
improve upon taking proposal draws from the prior

2. Adjustment of the ABC draws via (local) linear or non-linear
regression techniques

Beaumont et al., 2002; Marjoram et al., 2003 ; Sisson et
al., 2007; Beaumont et al., 2009; Blum, 2010
⇒ better simulation-based estimates of p(θ|η(y)) for a given N
and a given η(y)
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Choice of summary statistics?

However: the critical aspect of ABC is the choice of η(y)!

And, hence, the very definition of p(θ|η(y))!!

In practice: η(.) is not suffi cient ⇒

i.e. η(.) does not reproduce information content of y

Selected draws (as ε→ 0) estimate p(θ|η(y)) (not p(θ|y))

Selection of η(.) still an open topic, e.g.

Joyce and Marjoram, 2008; Blum, 2010; Fearnhead and
Prangle, 2012
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Choice of summaries via an auxiliary model

In particular, in the spirit of indirect inference (II):
Drovandi et al., 2011; Drovandi et al., 2015; Creel and
Kristensen, 2015; Martin, McCabe, Frazier,
Maneesoonthorn and Robert, ‘Auxiliary Likelihood-Based
ABC in State Space Models’, 2016

think about an auxiliary model that approximates the true
(analytically intractable) model

With associated likelihood function: La(y; β)

Apply maximum likelihood est. to La(y; β) ⇒ η(y) =β̂

β̂ asymptotically suffi cient for β in the auxiliary model

If approximating model is ‘accurate’enough

β̂ may be ‘close to’being asym. suff. for θ in the true model
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Validity of ABC?

Of late?

Attention has shifted from ABC as a practical tool for
estimating an inaccessible p(θ|y) (via p̂(θ|η(y)))

To the exploration of its theoretical asymptotic properties

i.e. does ABC (as based on some choice of η(y)) do sensible
things as the empirical sample size T gets bigger?

i.e. is ABC valid as an inferential method?
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The Asymptotics of ABC

Frazier, Martin, Robert and Rousseau, ‘Asymptotic
Properties of Approximate Bayesian Computation’, 2017:

Address the following questions:

1 What is the behaviour of Pr(θ ∈ A|d{η(y), η(z)} ≤ ε) as
T → ∞ and ε→ 0

For arbitrary η(.)?
For η(.) extracted from an auxiliary model?

2 Can knowledge of this asymptotic behaviour inform our choice
of ε, N, for some finite T ?

So actually addressing a theoretical and practical question

(See also Creel et al., 2015; Li and Fearnhead, 2016a,b;
Frazier, Robert and Rousseau, ‘Model Misspecification in
ABC: Consequences and Diagnostics’, 2017)
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Why Care?
Question 1: Asymptotic behaviour of ABC?

Unless y ∼ p(y|θ) in exponential family
η(y) cannot be suffi cient for θ and:

Pr(θ ∈ A|d{η(y), η(z)} ≤ ε) 6= Pr(θ ∈ A|y}

No real way of quantifying the 6=
Still need some guarantee that our inference is ‘valid’in some
sense
Minimum requirement here (surely!) is that:

for T ‘large enough’
the ABC posterior concentrates around (true) θ0 :

Pr(‖θ− θ0‖ > δ|d{η(y), η(z)} ≤ ε)
p→ 0 for any δ > 0

i.e. that Bayesian consistency holds
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Why Care?
Question 1: Asymptotic behaviour of ABC?

Would also like some guarantee of a sensible limiting shape

e.g. asymptotic normality

Plus - heretically - some knowledge of the asymptotic
sampling distribution of an ABC point estimator (e.g. ABC
posterior mean)
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Why Care?
Question 2: Choice of tolerance?

Prevailing wisdom? Take ε as small as possible!

⇒ selecting θ(i ) for which η(z(i )) ≈ η(y)
≈ represent draws from p(θ|η(y))

But ABC is costly to implement with small ε

To maintain a given Monte Carlo error in estimating p(θ|η(y))
from the selected draws

Need to increase N as ε decreases!

But is there a point beyond which taking ε smaller is not helpful?

Yes!
Related to the conditions required for asymptotic normality
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Why Care?

In addition......we now know

(based on more recent explorations.....)

that the asymptotic behaviour of has important ramifications
for forecasting as based on p(θ|η(y))!

later......
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The Asymptotics of ABC

Frazier, Martin, Robert and Rousseau, ‘Asymptotic
Properties of Approximate Bayesian Computation’, 2017:
Address three theoretical questions:

1. Does Pr(‖θ− θ0‖ > δ|d{η(y), η(z)} ≤ εT )
p→ 0 for any δ > 0,

and for some εT → 0 as T → ∞, for any given η(y)?

i.e. does Bayesian consistency hold? Theorem 1

2. What is the asymptotic shape of (a standardized version of)
Pr(θ ∈ A|d{η(y), η(z)} ≤ εT ), for any given η(y)

i.e. does asymptotic normality hold? Theorem 2

3. What are the (sampling) properties of the ABC posterior mean?

Is it asymptotically normal? Is it asy. unbiased? Theorem 3
What is the required rate εT → 0 for all three results??
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Key Assumptions

Assume:

A1. η(z) P→ b(θ) = ‘binding function’

A2. Need the presence of prior mass near b(θ0)

A3. The continuity and injectivity of b : Θ→ B

i.e. that θ0 is ‘identified’via b(θ0)
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Overview of Key Theoretical Results

Theorem 1 :

Under A1-A3 have posterior concentration for any
εT = o(1)

To say something about the rate of posterior concentration

We require an additional assumption on the tail behaviour of
η(z) (around b(θ))

Concentration rate is faster the thinner is the (assumed) tail
behaviour of η(z)

Concentration rate is faster the larger is the (assumed) prior
mass near the truth

Gael Martin (Monash), Drawing heavily from work with: , David Frazier (Monash University), Ole Maneesoonthorn (Uni. of Melbourne), Brendan McCabe (Uni. of Liverpool), Christian Robert (Université Paris Dauphine; CREST; Warwick) and Judith Rousseau (Université Paris Dauphine; CREST), Bayes on the Beach, 2017 ()Recent Advances in Approximate Bayesian Computation (ABC): Inference and Forecasting17 / 50



Overview of Key Theoretical Results

An arbitrary εT = o(1) will not however necessarily yield
asymptotic normality

Need a more stringent condition on εT for the Gaussian shape

+ need a CLT for η(z)

Assume some common (and canonical) rate
√
T for all elements

of η(y)
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Overview of Key Theoretical Results

Theorem 2:

Given εT = o(1/
√
T ) :

Pr(θ ∈ A|d{η(y), η(z)} ≤ εT )
p→ Φ(A)

⇒ asymptotic normality (Bernstein-von Mises)

⇒ Bayesian credible intervals will have correct frequentist
coverage (asymptotically)

(εT = O(1/
√
T ) yields some shape information but not

normality......)
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Overview of Key Theoretical Results

Theorem 3

Does asy. norm of ABC posterior mean require BvM? No!

For any εT = o(1) :

E(θ|d{η(y), η(z)} ≤ εT )
d→ N

i.e. asy. norm of the ABC posterior mean requires no particular
rate for the tolerance!

However, require εT = o(1/T 0.25) for E(θ|...) to also be
asymptotically unbiased as an estimator of θ0

But even this is a less stringent requirement on εT than that
required for the BvM (εT = o(1/T 0.5))

⇒ point estimation via ‘easier’than acquisition of BvM
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Role of the Binding Function??

Killer condition (for all asymptotic results re. θ0):

binding function : b(·) is one-to-one in θ

Required to uniquely identify θ0 via b(θ0)

Identification hard to achieve in practice!

Diffi cult to even verify!

Why? b(·) is unknown in closed form (in practice)!

One-to-one condition also required for (frequentist) methods of
indirect inference etc.

Verification remains an open problem
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Practical Implications of Results?

Standard practice: select draws of θ that yield distances:

d{η(y), η(z)}
that are less than some α quantile (e.g. α = 0.01)

We link εT = o(1) to αT = o(1)

e.g: εT = o(1/
√
T ) (required for BvM)

⇔ αT = o(1/
(√

T
)kθ
) (kθ = dim(θ))

Larger kθ ⇒ smaller αT

If wish to maintain the same Monte Carlo error

Have to increase N (and, hence computational burden) as T
increases

And even more so, the larger is kθ !
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Practical Implications of Results?

kη = dim(η(y)) can exacerbate the problem once Monte
Carlo error is taken into account.

Question: do we gain anything by decreasing εT (and hence
αT ) below that required for the BvM??

(i.e. the very strictest requirement on εT from our theoretical
results)

i.e. can we cap the computational burden??

Cutting to the chase....

Using a simple example in which p(θ|y) has closed form

Find no gain in accuracy after αT = o(1/
(√

T
)kθ
)
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Key Messages?

Link between ABC tolerance (εT ) and the asymptotic behaviour
of ABC is important (and subtle)

Posterior normality requires a more stringent condition on εT

and, hence, a higher computational burden, than do other
asymptotic results

Rebuke conventional wisdom on choice of εT (αT )

Care to be taken in choice of summary statistics

With injectivity underpinning all asymptotic results

Question remaining?.....

What is the impact on Bayesian forecasting of using
p(θ|η(y)) rather than p(θ|y) to quantify parameter uncertainty?
And do the asymptotic properties of p(θ|η(y)) matter?
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Exact Bayesian Forecasting

The Bayesian paradigm:

Quantifying uncertainty about:

unknown|known
using probability

In forecasting, quantity of interest is yT+1;

pexact(yT+1|y) =
∫

θ
p(yT+1, θ|y)dθ

=
∫

θ
p(yT+1|θ, y)p(θ|y)dθ

= Eθ|y [p(yT+1|θ, y)]
Marginal predictive = expectation of the conditional predictive

Conditional predictive reflects the assumed model
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Exact Bayesian Forecasting

The expectation is w.r.t: p(θ|y)
Given M draws from p(θ|y), pexact(yT+1|y) can be estimated
as

1 either:

̂pexact (yT+1|y) =
1
M

M

∑
i−1
p(yT+1|θ(i ), y)

2 or: ̂pexact (yT+1|y) constructed from draws of y (i )T+1 extracted

from p(yT+1|θ(i ), y)

⇒ exact Bayesian forecasting (up to simulation error)

Note: while only 1. requires p(yT+1|θ(i), y) to be available in
closed form

Both 1. and 2. require simulation from p(θ|y) ⇒ (broadly
speaking) requires p(y|θ) to be available
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Approximate Bayesian Forecasting

Frazier, Maneesoonthorn, Martin and McCabe,
‘Approximate Bayesian Forecasting’, 2017:

How to conduct Bayesian forecasting when the DGP p(y|θ) is
intractable?

And an approximation to p(θ|y) is used to quantify
uncertainty about θ?

⇒ an approximation to pexact(yT+1|y)

Focus is on approximating p(θ|y) via ABC

⇒ Bring insights from inference ⇒ forecasting realm

No-one has looked at the use of ABC (and the choice of η(y))
in a forecasting context
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Approximate Bayesian Forecasting

ABC automatically yields draws from p(θ|η(y)) as the selected
draws from the ABC algorithm are used to estimate p(θ|η(y))!
Hence, we use those selected draws of θ to estimate:

pABC (yT+1|y) =
∫
p(yT+1|θ, y)p(θ|η(y))dθ

= an ‘approximate Bayesian predictive’

But what is pABC (yT+1|y)??
Is it a proper predictive density function??

How does it relate to pexact(yT+1|y)??
We show that pABC (yT+1|y) is a proper density function
But that:

pABC (yT+1|y) = pexact(yT+1|y) iff η(y) is suffi cient
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Approximate Bayesian Forecasting

Questions!!
1 What is the relationship between pexact (yT+1|y) and
pABC (yT+1|y) as T → ∞?

What role does Bayesian consistency of p(θ|η(y)) play here?

2 How do we formalize and quantify the loss when we move
from pexact (yT+1|y) to pABC (yT+1|y)?

3 How does one compute pABC (yT+1|y) in state space models?
Does one condition state inference only on η(y) ?

4 How should one choose η(y) in an empirical setting?

Why not use forecasting performance to determine η(y)?

Questions have a theoretical and a practical dimension
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Q1: Bayes consistency and ‘merging’of forecasts

What happens as T → ∞?

Blackwell and Dubins (1962):

Two predictive distributions, Py and Gy, ‘merge’if:

ρTV {Py,Gy} = sup
B∈F
|Py(B)− Gy(B)| = oP(1)

Theorem 1::

Under the conditions for the Bayesian consistency of p(θ|y) and
p(θ|η(y)) : Pexact(·) and PABC (·) merge

⇒ for large enough T exact and ABC-based predictions are
equivalent!
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Q1: Example: MA(2): T = 500

Consider (simple) example used in Marin et al., 2011:

yt = et + θ1et−1 + θ2et−2

et ∼ i .i .d .N(0, σ0) with true: θ10 = 0.8; θ20 = 0.6; σ0 = 1.0

Use sample autocovariances

γl = cov(yt , yt−l )

to construct (alternative vectors of) summary statistics:

η(1)(y) = (γ0,γ1)
′; η(2)(y) = (γ0,γ1,γ2)

′

η(3)(y) = (γ0,γ1,γ2,γ3)
′; η(4)(y) = (γ0,γ1,γ2,γ3,γ4)

′

MA dependence ⇒ no reduction to suffi ciency possible

⇒ p(θ|η(j)(y)) 6= p(θ|y) for all j = 1, 2, 3, 4
What about pABC (yT+1|y) versus pexact (yT+1|y)??

Gael Martin (Monash), Drawing heavily from work with: , David Frazier (Monash University), Ole Maneesoonthorn (Uni. of Melbourne), Brendan McCabe (Uni. of Liverpool), Christian Robert (Université Paris Dauphine; CREST; Warwick) and Judith Rousseau (Université Paris Dauphine; CREST), Bayes on the Beach, 2017 ()Recent Advances in Approximate Bayesian Computation (ABC): Inference and Forecasting31 / 50



Posterior densities: exact and ABC: T = 500
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Predictive densities: exact and ABC: T = 500!

For large T : the exact and approximate predictives are very
similar - for all η(j)(y)!

Gael Martin (Monash), Drawing heavily from work with: , David Frazier (Monash University), Ole Maneesoonthorn (Uni. of Melbourne), Brendan McCabe (Uni. of Liverpool), Christian Robert (Université Paris Dauphine; CREST; Warwick) and Judith Rousseau (Université Paris Dauphine; CREST), Bayes on the Beach, 2017 ()Recent Advances in Approximate Bayesian Computation (ABC): Inference and Forecasting33 / 50



Q1: Example: MA(2); T=500, 2000, 4000, 5000

η(1)(y), η(2)(y), η(3)(y), η(4)(y)

p(θ|η(j)(y)) Bayesian consistent for j = 2, 3, 4 only

⇒ expect to see evidence of merging only for j = 2, 3, 4

Measure proximity of pexact(yT+1|y) and pABC (yT+1|y) using:
RMSE of difference between the cdfs (↓ as T ↑)
Total variation between the cdfs (↓ as T ↑)
Hellinger distance between the cdfs (↓ as T ↑)
Degree of overlap between the pdfs (↑ as T ↑)

All averaged over 100 replications of y
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Q1: Example: MA(2); T=500, 2000, 4000, 5000

Bayesian consistency in action!
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Q2: Quantifying Loss of Accuracy?

In summary:

Under Bayes consistency, pABC (yT+1|y) and pexact (yT+1|y)
equivalent for T → ∞

Even for finite T (and lack of consistency) little difference
discerned....

Can we quantify accuracy loss?

Let S(pexact , yT+1) be a proper scoring rule (e.g. the log score)

Define expected score under the truth:

M(pexact , ptruth) =
∫
y∈Ω

S(pexact , yT+1)p(yT+1|θ0, y)︸ ︷︷ ︸
ptruth

dyT+1
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Q2: Quantifying Loss of Accuracy?

Theorem 2:: Under Bayes consistency for p(θ|y) and
p(θ|η(y)), if S(·, ·) is a strictly proper scoring rule:

1. |M(pexact , ptruth)−M(pABC , ptruth)| = oP(1);

2. |Ey [M(pexact , ptruth)]−Ey [M(pABC , ptruth)] | = o(1);
3. 1. and 2. are exactly satisfied if and only if η(y) is suffi cient for y.

Either:

1. conditionally (on a given y) or
2. unconditionally (over y)

For T → ∞ approximate forecasting incurs no accuracy loss

Other side of the merging coin
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Q2: Quantifying Loss of Accuracy?

What if we invoke more than Bayes consistency?

Invoking the (Cramer Rao) effi ciency of the MLE (relative to
the ABC posterior mean):

M(pexact , ptruth) ≥ M(pABC , ptruth)

Ey [M(pexact , ptruth)] ≥ Ey [M(pABC , ptruth)]

⇒ for large (but finite) T would expect the exact predictive to
yield higher scores than the approximate predictive!
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Q2: Example: MA(2): T = 500

Average predictive scores over 500 out-of sample values:

ABC av. score Exact av. score
η(1)(y) η(2)(y) η(3)(y) η(4)(y)

LS -1.43 -1.42 -1.43 -1.43 -1.40
QS 0.28 0.28 0.28 0.28 0.29

CRPS -0.57 -0.56 -0.57 -0.57 -0.56

Loss is incurred by being approximate
But it is negligible!
(Including for ‘non-consistent’η(1)(y))
Computational gain?

pABC (yT+1|y) : 3 seconds
pexact (yT+1|y) : 360 seconds!
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Q3: ABC prediction in state space models?

True model (for financial return, yt = lnPt − lnPt−1), SV:

yt =
√
Vt εt ; εt ∼ i .i .d .N(0, 1)

lnVt = θ1 lnVt−1 + ηt ; ηt ∼ i .i .d .N(0, θ2)

θ = (θ1, θ2)′

Auxiliary model, GARCH:

yt =
√
Vt εt ; εt ∼ i .i .d .N(0, 1)

Vt = β1 + β2Vt−1 + β3y
2
t−1

Closed form for auxiliary likelihood ⇒ β̂ = (β̂1, β̂2, β̂3)
′

⇒ η(y) and η(z)
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Q3: ABC prediction in state space models?

Exact:

pexact(yT+1|y) =
∫
VT+1

∫
V

∫
θ
p(yT+1|VT+1)

× p(VT+1|VT , θ, y)p(V|θ, y)p(θ|y)︸ ︷︷ ︸
p(V,θ|y)

dθdVdVT+1

MCMC used to draw from p(V, θ|y)

⇒ independent draws from p(VT+1|VT , θ, y) and
p(yT+1|VT+1)

⇒ p̂exact(yT+1|y)
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Q3: ABC prediction in state space models?

ABC:

pABC (yT+1|y) =
∫
VT+1

∫
V

∫
θ
p(yT+1|VT+1)

× p(VT+1|VT , θ, y)p(V|θ, y)p(θ|η(y))dθdVdVT+1

ABC used to draw from p(θ|η(y))

⇒ particle filtering used to integrate out V

⇒ yields full posterior inference (i.e. |y) on VT
Exact inference (MCMC) on V1:T−1 not required
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Nature of ABC inference on θ of little importance.....
⇒ All pABC (yT+1|y) ≈ pexact(yT+1|y)!
What if condition VT on η(y) only? i.e. omit the PF step?
Inaccuracy!
Need to get the predictive model: p(yT+1|VT+1) and
p(VT+1|VT , θ, y) ‘right’!
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Q4: Empirical setting??

Now to the hard bit......

Thus far? Have assumed:
1 That the DGP: p(yT+1, y, θ) = p(yT+1|y, θ)p(y|θ) is correct
2 That we have access to p(θ|y)⇒ pexact (yT+1|y)

for assessment of p(θ|η(y))⇒ pABC (yT+1 |y)

In a realistic empirical setting:
1 We don’t know the true DGP!!
2 We are accessing pABC (yT+1|y) because we cannot (or it is too
computationally burdensome) to access pexact (yT+1|y)!

3 ⇒ no benchmark for pABC (yT+1|y)
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Q4: Empirical setting??

What we CAN access though is observed yT+1 in a hold out
sample

⇒ if forecasting is the primary aim

Why not choose η(y) (and, hence, pABC (yT+1|y)) according to
actual predictive performance?
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SV model with dynamic jumps and alpha stable
errors

Two measurement equations:

rt = exp
(
ht
2

)
εt + ∆NtZt ; εt ∼ N(0, 1)

lnBVt = ψ0 + ψ1ht + σBV ζt

Three state equations:

ht = ω+ ρht−1 + σhηt ; ηt ∼ S(α,−1, 0)
Zt ∼ N(µ, σ2z )

Pr(∆Nt = 1|Ft−1) = δt = δ+ βδt−1 + γ∆Nt−1 (Hawkes)

⇒ no closed-form solution for p(ht |ht−1)
⇒ run with ABC and approximate Bayesian forecasting......
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Choose η(y) via four different GARCH-type auxiliary models
supplemented with various statistics computed from
high-frequency measures of volatility and jumps

Compute average scores (for rt and lnBVt) and over hold out
sample of one trading year:

Auxiliary model
GARCH-N GARCH-T TARCH-T RGARCH

LS -1.571 -1.280 -1.202 -1.945
rt QS 0.377 0.474 0.515 0.274

CRPS -1.515 -1.052 -0.989 -2.103
LS -2.732 -2.757 -2.928 -2.827

lnBVt QS 0.095 0.049 0.016 0.094
CRPS -2.038 -1.416 -1.377 -2.570

TGARCH with Student t errors, and various add-ons, the best
overall!
Uniformly so with predicting returns
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To come.....

Questions remain though regarding the theoretical
(asymptotic) properties of pABC (yT+1|y) built from such a
choice of η(y)

Bayesian consistency of p(θ|η(y)) no longer sought

⇒ merging of pABC (yT+1|y) and pexact(yT+1|y) no longer an
automatic outcome

However, under correct model specification: has been shown
to provide an upper bound on the accuracy of pABC (yT+1|y)

⇒ choosing η(y)⇒ most accurate pABC (yT+1|y)

≡ choosing pABC (yT+1|y) that is closest to pexact(yT+1|y)
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To come.....

Under mis-specification??

Still makes perfect sense to pick the pABC (yT+1|y) with the
best forecasting performance!

What is unclear though is the relationship between
pexact(yT+1|y) and pABC (yT+1|y)

Indeed, in what sense does pexact(yT+1|y) remain preferable to
pABC (yT+1|y)?

Are there ways of producing approximate predictives that are
robust to mis-specification?

......For another day......
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