Recent Advances in Approximate Bayesian Computation (ABC): Inference and Forecasting

Gael Martin (Monash)

Drawing heavily from work with:

 David Frazier (Monash University), Ole Maneesoonthorn (Uni. of Melbourne), Brendan McCabe (Uni. of Liverpool), Christian
 Robert (Université Paris Dauphine; CREST; Warwick) and Judith Rousseau (Université Paris Dauphine; CREST)

Bayes on the Beach, 2017

Overview

• Goal: posterior inference on unknown θ :

 $\boldsymbol{\rho}(\boldsymbol{\theta}|\mathbf{y}) \propto \boldsymbol{\rho}(\mathbf{y}|\boldsymbol{\theta})\boldsymbol{\rho}(\boldsymbol{\theta})$

- When the DGP $p(\mathbf{y}|\boldsymbol{\theta})$ is intractable:
- i.e. either (parts of) the DGP unavailable in closed form:
 - Continuous time models (unknown transitions)
 - Gibbs random fields (unknown integrating constant);
 - α -stable distributions (density function unavailable)
- **Or** dimension of θ so large:
 - Coalescent trees
 - Large-scale discrete choice models
- that exploration/marginalization infeasible via exact methods:
- Can/must resort to approximate inference

Approximate Methods

- Goal then is to produce an approximation to $p(\theta|\mathbf{y})$:
- Approximate Bayesian computation (ABC)
- Synthetic Likelihood
- Variational Bayes
- Integrated nested Laplace (INLA)
- **ABC** particularly prominent in genetics, epidemiology, evolutionary biology, ecology
- Where move away from **exact** Bayesian inference *also* motivated by certain features of their problems

Approximate Bayesian Computation (ABC)

- Whilst $p(\mathbf{y}|\boldsymbol{\theta})$ is intractable
- $p(\mathbf{y}|\boldsymbol{\theta})$ (and $p(\boldsymbol{\theta})$) can be simulated from
- ABC requires only this feature
- to produce a simulation-based estimate of an approximation to $p(\theta|\mathbf{y})$
- (Recent reviews: Marin et al. 2011; Sisson and Fan, 2011; Robert, 2015; Drovandi, 2017)

Basic ABC Algorithm - Reiterating!

- Aim is to produce draws from an approximation to $p(\theta|\mathbf{y})$
- and use draws to estimate that approximation
- The simplest (accept/reject) form of the algorithm:
 - Simulate $(\boldsymbol{\theta}^{i})$, i = 1, 2, ..., N, from $p(\boldsymbol{\theta})$
 - Simulate **psuedo-data** \mathbf{z}^i , i = 1, 2, ..., N, from $p(\mathbf{z}|\boldsymbol{\theta}^i)$
 - **3** Select (θ^i) such that:

$$d\{\eta(\mathbf{y}), \eta(\mathbf{z}^i)\} \leq \varepsilon$$

- $\eta(.)$ is a (vector) summary statistic
- d{.} is a distance criterion
- the tolerance ε is arbitrarily small

Extensions.....

- 1. Modification of the basic algorithm
 - Using different kernels from the **indicator** kernel:

 $\mathcal{I}\left[d\{\eta(\mathbf{y}), \eta(\mathbf{z}^{i})\} \leq \varepsilon\right]$

to give higher weight to those draws, θ^i , that produce $\eta(\mathbf{z}^i)$ close to $\eta(\mathbf{y})$

- Inserting MCMC or sequential Monte Carlo (SMC) steps to improve upon taking proposal draws from the prior
- 2. Adjustment of the ABC draws via (local) linear or non-linear regression techniques
 - Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 2007; Beaumont et al., 2009; Blum, 2010
 - \Rightarrow better simulation-based estimates of $p(\theta|\eta(\mathbf{y}))$ for a given N and a given $\eta(\mathbf{y})$

Choice of summary statistics?

- However: the critical aspect of ABC is the choice of $\eta(y)$!
- And, hence, the very definition of $p(\theta|\eta(\mathbf{y}))!!$
- In practice: $\eta(.)$ is not sufficient \Rightarrow
- i.e. $\eta(.)$ does not reproduce information content of **y**
- Selected draws (as $\varepsilon \to 0$) estimate $p(\theta|\eta(\mathbf{y}))$ (not $p(\theta|\mathbf{y}))$
- Selection of $\eta(.)$ still an open topic, e.g.
 - Joyce and Marjoram, 2008; Blum, 2010; Fearnhead and Prangle, 2012

Choice of summaries via an auxiliary model

- In particular, in the spirit of indirect inference (II):
 - Drovandi et al., 2011; Drovandi et al., 2015; Creel and Kristensen, 2015; Martin, McCabe, Frazier, Maneesoonthorn and Robert, 'Auxiliary Likelihood-Based ABC in State Space Models', 2016
- think about an **auxiliary model** that **approximates** the true (analytically intractable) model
- With associated likelihood function: $L_a(\mathbf{y}; \boldsymbol{\beta})$
- Apply maximum likelihood est. to $L_{\mathsf{a}}(\mathsf{y}; \boldsymbol{eta}) \Rightarrow \eta(\mathsf{y}) = \widehat{\boldsymbol{eta}}$
- $\widehat{m{eta}}$ asymptotically sufficient for $m{eta}$ in the auxiliary model
- If approximating model is 'accurate' enough
 - $\widehat{oldsymbol{eta}}$ may be 'close to' being **asym. suff.** for $oldsymbol{ heta}$ in the true model

- Of late?
- Attention has shifted from ABC as a **practical** tool for estimating an inaccessible $p(\theta|\mathbf{y})$ (via $\hat{p}(\theta|\eta(\mathbf{y}))$)
- To the exploration of its theoretical asymptotic properties
- i.e. does ABC (as based on some choice of η(y)) do sensible things as the empirical sample size T gets bigger?
- i.e. is **ABC valid** as an **inferential** method?

The Asymptotics of ABC

- Frazier, Martin, Robert and Rousseau, 'Asymptotic Properties of Approximate Bayesian Computation', 2017:
- Address the following questions:
 - What is the behaviour of $\Pr(\theta \in A | d\{\eta(\mathbf{y}), \eta(\mathbf{z})\} \le \varepsilon)$ as $T \to \infty$ and $\varepsilon \to 0$
 - For arbitrary $\eta(.)$?
 - For $\eta(.)$ extracted from an **auxiliary model**?
 - Can knowledge of this asymptotic behaviour inform our choice of ε, N, for some finite T?
- So actually addressing a theoretical and practical question
- (See also Creel et al., 2015; Li and Fearnhead, 2016a,b; Frazier, Robert and Rousseau, 'Model Misspecification in ABC: Consequences and Diagnostics', 2017)

Why Care? Question 1: Asymptotic behaviour of ABC?

- Unless $\mathbf{y} \sim p(\mathbf{y}|\boldsymbol{\theta})$ in exponential family
- $\eta(\mathbf{y})$ cannot be **sufficient** for $\boldsymbol{\theta}$ and:

$$\mathsf{Pr}(\boldsymbol{\theta} \in A | d\{\boldsymbol{\eta}(\mathbf{y}), \boldsymbol{\eta}(\mathbf{z})\} \leq \varepsilon) \neq \mathsf{Pr}(\boldsymbol{\theta} \in A | \mathbf{y}\}$$

- No real way of quantifying the \neq
- Still need some guarantee that our inference is 'valid' in some sense
- Minimum requirement here (surely!) is that:
 - for T 'large enough'
 - the ABC posterior **concentrates** around (true) θ_0 :

 $\Pr(\|\boldsymbol{\theta} - \boldsymbol{\theta}_0\| > \delta | d\{\boldsymbol{\eta}(\mathbf{y}), \boldsymbol{\eta}(\mathbf{z})\} \leq \varepsilon) \xrightarrow{p} 0 \text{ for any } \delta > 0$

• i.e. that Bayesian consistency holds

- Would also like some guarantee of a sensible limiting shape
 - e.g. asymptotic normality
- Plus heretically some knowledge of the asymptotic sampling distribution of an ABC point estimator (e.g. ABC posterior mean)

- Prevailing wisdom? Take ε as small as possible!
 - \Rightarrow selecting $heta^{(i)}$ for which $\eta(\mathbf{z}^{(i)}) pprox \eta(\mathbf{y})$
 - \approx represent draws from $p(\pmb{\theta}|\pmb{\eta}(\mathbf{y}))$
- But ABC is costly to implement with small ε
- To maintain a given Monte Carlo error in estimating $p(\theta|\eta(\mathbf{y}))$ from the selected draws
- Need to increase N as ε decreases!
- But is there a point beyond which taking ε smaller is not helpful?
 - Yes!
 - Related to the conditions required for asymptotic normality

- In addition.....we **now** know
- (based on more recent explorations.....)
- that the asymptotic behaviour of has important ramifications for forecasting as based on $p(\theta|\eta(\mathbf{y}))!$
- Iater.....

The Asymptotics of ABC

- Frazier, Martin, Robert and Rousseau, 'Asymptotic Properties of Approximate Bayesian Computation', 2017:
- Address three theoretical questions:
- 1. Does $\Pr(\|\boldsymbol{\theta} \boldsymbol{\theta}_0\| > \delta | d\{\boldsymbol{\eta}(\mathbf{y}), \boldsymbol{\eta}(\mathbf{z})\} \le \varepsilon_T) \xrightarrow{p} 0$ for any $\delta > 0$, and for some $\varepsilon_T \to 0$ as $T \to \infty$, for any given $\boldsymbol{\eta}(\mathbf{y})$?
 - i.e. does Bayesian consistency hold? Theorem 1
- 2. What is the **asymptotic shape** of (a standardized version of) $\Pr(\theta \in A | d\{\eta(\mathbf{y}), \eta(\mathbf{z})\} \leq \varepsilon_T)$, for any given $\eta(\mathbf{y})$
 - i.e. does asymptotic normality hold? Theorem 2
- 3. What are the (sampling) properties of the ABC posterior mean?
 - Is it asymptotically normal? Is it asy. unbiased? Theorem 3
 - What is the required rate $\varepsilon_T \rightarrow 0$ for all three results??

• Assume:

A1.
$$\eta(\mathsf{z}) \stackrel{P}{
ightarrow} \mathsf{b}(heta) =$$
 'binding function'

- A2. Need the presence of **prior mass** near $\mathbf{b}(\theta_0)$
- A3. The continuity and **injectivity** of $\mathbf{b}: \mathbf{\Theta} \to \mathcal{B}$
 - i.e. that $heta_0$ is 'identified' via ${f b}(heta_0)$

• Theorem 1 :

- Under A1-A3 have posterior concentration for any $\varepsilon_T = o(1)$
- To say something about the rate of posterior concentration
 - We require an additional assumption on the tail behaviour of $\eta(\mathbf{z})$ (around $\mathbf{b}(\theta)$)
 - Concentration rate is **faster** the thinner is the (assumed) tail behaviour of $\eta(\mathbf{z})$
 - Concentration rate is **faster** the larger is the (assumed) prior mass near the truth

- An arbitrary $\varepsilon_T = o(1)$ will not however necessarily yield asymptotic normality
- Need a more stringent condition on ε_T for the Gaussian shape
- + need a CLT for $\eta(z)$
- Assume some common (and canonical) rate \sqrt{T} for all elements of $\eta(\mathbf{y})$

• Theorem 2:

• Given
$$\varepsilon_T = o(1/\sqrt{T})$$
 :

$$\Pr(\boldsymbol{\theta} \in A | d\{\boldsymbol{\eta}(\mathbf{y}), \boldsymbol{\eta}(\mathbf{z})\} \leq \varepsilon_T) \xrightarrow{p} \Phi(A)$$

• \Rightarrow asymptotic normality (Bernstein-von Mises)

- → Bayesian credible intervals will have correct frequentist coverage (asymptotically)
- $(\varepsilon_T = O(1/\sqrt{T})$ yields some shape information but not normality.....)

• Theorem 3

- Does asy. norm of ABC posterior mean require BvM? No!
- For any $\varepsilon_T = o(1)$:

$$E(\boldsymbol{\theta}|d\{\boldsymbol{\eta}(\mathbf{y}),\boldsymbol{\eta}(\mathbf{z})\} \leq \varepsilon_T) \xrightarrow{d} N$$

- i.e. **asy. norm** of the ABC posterior mean requires no *particular* rate for the tolerance!
- However, require $\varepsilon_T = o(1/T^{0.25})$ for $E(\theta|...)$ to also be asymptotically unbiased as an estimator of θ_0
- But even this is a **less stringent** requirement on ε_T than that required for the **BvM** ($\varepsilon_T = o(1/T^{0.5})$)
- \bullet \Rightarrow point estimation via 'easier' than acquisition of BvM

Role of the Binding Function??

• Killer condition (for all asymptotic results re. θ_0):

binding function : $\mathbf{b}(\cdot)$ is one-to-one in $\boldsymbol{\theta}$

- Required to **uniquely identify** θ_0 via $\mathbf{b}(\theta_0)$
- Identification hard to achieve in practice!
- Difficult to even verify!
- Why? $\mathbf{b}(\cdot)$ is unknown in closed form (in practice)!
- One-to-one condition *also required* for (frequentist) methods of **indirect inference** etc.
- Verification remains an open problem

Practical Implications of Results?

• Standard practice: select draws of θ that yield distances: $d\{\eta(\mathbf{y}), \eta(\mathbf{z})\}$

that are less than some α quantile (e.g. $\alpha = 0.01$)

• We link
$$\varepsilon_{\mathcal{T}} = o(1)$$
 to $\alpha_{\mathcal{T}} = o(1)$

• e.g:
$$\varepsilon_T = o(1/\sqrt{T})$$
 (required for ${f BvM}$)

•
$$\Leftrightarrow \alpha_T = o(1/\left(\sqrt{T}\right)^{k_{\theta}}) \ (k_{\theta} = \dim(\theta))$$

- Larger $k_{\theta} \Rightarrow$ smaller α_T
- If wish to maintain the same Monte Carlo error
- Have to increase N (and, hence computational burden) as T increases
- And even more so, the larger is k_{θ} !

Practical Implications of Results?

- k_η = dim(η(y)) can exacerbate the problem once Monte Carlo error is taken into account.
- Question: do we gain anything by decreasing ε_T (and hence α_T) below that required for the **BvM**??
- (i.e. the very strictest requirement on ε_T from our theoretical results)
- i.e. can we **cap** the computational burden??
- Cutting to the chase....
- Using a simple example in which $p(\theta|\mathbf{y})$ has closed form

• Find **no gain in accuracy** after $\alpha_T = o(1/(\sqrt{T})^{k_{\theta}})$

Key Messages?

- Link between ABC tolerance (ε_T) and the asymptotic behaviour of ABC is important (and subtle)
- \bullet Posterior normality requires a more stringent condition on $\epsilon_{\mathcal{T}}$
- and, hence, a higher computational burden, than do other asymptotic results
- Rebuke conventional wisdom on choice of ε_T (α_T)
- Care to be taken in choice of summary statistics
- With injectivity underpinning all asymptotic results
- Question remaining?.....
- What is the impact on **Bayesian forecasting** of using $p(\theta|\eta(\mathbf{y}))$ rather than $p(\theta|\mathbf{y})$ to quantify parameter uncertainty?
- And do the asymptotic properties of $p(\theta|\eta(\mathbf{y}))$ matter?

Exact Bayesian Forecasting

- The Bayesian paradigm:
- Quantifying uncertainty about:

unknown known

- using probability
- In **forecasting**, quantity of interest is y_{T+1} ;

$$p_{exact}(y_{T+1}|\mathbf{y}) = \int_{\theta} p(y_{T+1}, \theta|\mathbf{y}) d\theta$$
$$= \int_{\theta} p(y_{T+1}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$$
$$= E_{\theta|\mathbf{y}} [p(y_{T+1}|\theta, \mathbf{y})]$$

- Marginal predictive = expectation of the conditional predictive
- Conditional predictive reflects the assumed model

Exact Bayesian Forecasting

- The expectation is w.r.t: $p(\theta|\mathbf{y})$
- Given *M* draws from $p(\theta|\mathbf{y})$, $p_{exact}(y_{T+1}|\mathbf{y})$ can be **estimated** as

either:

$$\widehat{p_{exact}(y_{T+1}|\mathbf{y})} = \frac{1}{M}\sum_{i=1}^{M}p(y_{T+1}|\boldsymbol{\theta}^{(i)},\mathbf{y})$$

or: $p_{exact}(y_{T+1}|\mathbf{y})$ constructed from draws of $y_{T+1}^{(i)}$ extracted from $p(y_{T+1}|\boldsymbol{\theta}^{(i)}, \mathbf{y})$

- \Rightarrow exact Bayesian forecasting (up to simulation error)
- Note: while only 1. requires $p(y_{T+1}|\theta^{(i)}, \mathbf{y})$ to be available in closed form
- Both 1. and 2. require simulation from $p(\theta|\mathbf{y}) \Rightarrow$ (broadly speaking) requires $p(\mathbf{y}|\theta)$ to be available

Approximate Bayesian Forecasting

- Frazier, Maneesoonthorn, Martin and McCabe, 'Approximate Bayesian Forecasting', 2017:
- How to conduct Bayesian forecasting when the DGP $p(\mathbf{y}|\boldsymbol{\theta})$ is intractable?
- And an approximation to p(θ|y) is used to quantify uncertainty about θ?
- \Rightarrow an approximation to $p_{exact}(y_{T+1}|\mathbf{y})$
- Focus is on approximating $p(\theta|\mathbf{y})$ via \mathbf{ABC}
- \Rightarrow Bring insights from **inference** \Rightarrow **forecasting** realm
- No-one has looked at the use of ABC (and the choice of $\eta(\mathbf{y}))$ in a forecasting context

Approximate Bayesian Forecasting

- ABC automatically yields draws from $p(\theta|\eta(\mathbf{y}))$ as the selected draws from the ABC algorithm are used to estimate $p(\theta|\eta(\mathbf{y}))!$
- Hence, we use those selected draws of θ to estimate:

$$p_{ABC}(y_{T+1}|\mathbf{y}) = \int p(y_{T+1}|\boldsymbol{ heta}, \mathbf{y}) p(\boldsymbol{ heta}|\boldsymbol{\eta}(\mathbf{y})) d\boldsymbol{ heta}$$

= an 'approximate Bayesian predictive'

- But what is $p_{ABC}(y_{T+1}|\mathbf{y})$??
- Is it a proper predictive density function??
- How does it relate to $p_{exact}(y_{T+1}|\mathbf{y})$??
- We show that $p_{ABC}(y_{T+1}|\mathbf{y})$ is a proper density function
- But that:

$$p_{ABC}(y_{T+1}|\mathbf{y}) = p_{exact}(y_{T+1}|\mathbf{y})$$
 iff $\eta(\mathbf{y})$ is sufficient

Approximate Bayesian Forecasting

Questions!!

- What is the relationship between $p_{exact}(y_{T+1}|\mathbf{y})$ and $p_{ABC}(y_{T+1}|\mathbf{y})$ as $T \to \infty$?
 - What role does **Bayesian consistency** of $p(\theta|\eta(\mathbf{y}))$ play here?
- **2** How do we **formalize** and **quantify** the loss when we move from $p_{exact}(y_{T+1}|\mathbf{y})$ to $p_{ABC}(y_{T+1}|\mathbf{y})$?
- **3** How does one compute $p_{ABC}(y_{T+1}|\mathbf{y})$ in state space models?
 - Does one condition state inference only on $\eta(\mathbf{y})$?
- How should one **choose** $\eta(\mathbf{y})$ in an empirical setting?
 - Why not use forecasting performance to determine $\eta(\mathbf{y})$?
- Questions have a theoretical **and** a practical dimension

Q1: Bayes consistency and 'merging' of forecasts

- What happens as $T \to \infty$?
- Blackwell and Dubins (1962):
- Two predictive distributions, P_y and G_y , 'merge' if:

$$ho_{\mathcal{T}V}\{\mathsf{P}_{\mathbf{y}},\mathsf{G}_{\mathbf{y}}\} = \sup_{B\in\mathcal{F}}|\mathsf{P}_{\mathbf{y}}(B)-\mathsf{G}_{\mathbf{y}}(B)| = o_{\mathbb{P}}(1)$$

- Theorem 1::
- Under the conditions for the Bayesian consistency of $p(\theta|\mathbf{y})$ and $p(\theta|\boldsymbol{\eta}(\mathbf{y})) : P_{exact}(\cdot)$ and $P_{ABC}(\cdot)$ merge
- ⇒ for large enough *T* exact and ABC-based predictions are equivalent!

Q1: Example: MA(2): T = 500

• Consider (simple) example used in Marin et al., 2011:

$$y_t = e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2}$$

- $e_t \sim i.i.d.N(0, \sigma_0)$ with true: $\theta_{10} = 0.8$; $\theta_{20} = 0.6$; $\sigma_0 = 1.0$
- Use sample autocovariances

$$\gamma_l = cov(y_t, y_{t-l})$$

• to construct (alternative vectors of) summary statistics:

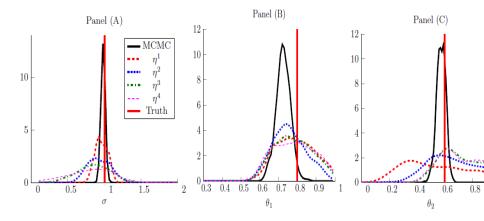
$$\begin{split} \eta^{(1)}(\mathbf{y}) &= (\gamma_0, \gamma_1)'; \ \eta^{(2)}(\mathbf{y}) = (\gamma_0, \gamma_1, \gamma_2)' \\ \eta^{(3)}(\mathbf{y}) &= (\gamma_0, \gamma_1, \gamma_2, \gamma_3)'; \ \eta^{(4)}(\mathbf{y}) = (\gamma_0, \gamma_1, \gamma_2, \gamma_3, \gamma_4)' \end{split}$$

• MA dependence \Rightarrow no reduction to sufficiency possible

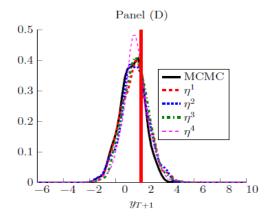
•
$$\Rightarrow p(\theta|\eta^{(j)}(\mathbf{y})) \neq p(\theta|\mathbf{y})$$
 for all $j = 1, 2, 3, 4$

• What about $p_{ABC}(y_{T+1}|\mathbf{y})$ versus $p_{exact}(y_{T+1}|\mathbf{y})$?

Posterior densities: exact and ABC: T = 500



Predictive densities: exact and ABC: T = 500!



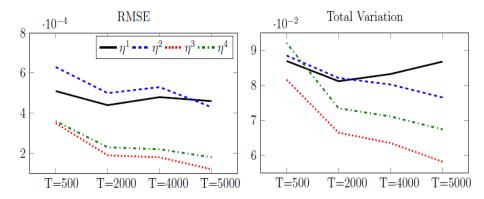
 For large T : the exact and approximate predictives are very similar - for all η^(j)(y)!

Q1: Example: MA(2); T=500, 2000, 4000, 5000

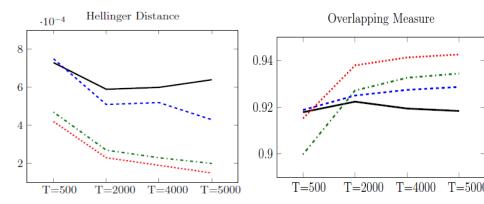
•
$$\eta^{(1)}(\mathbf{y})$$
, $\eta^{(2)}(\mathbf{y})$, $\eta^{(3)}(\mathbf{y})$, $\eta^{(4)}(\mathbf{y})$

- $p(\theta|\eta^{(j)}(\mathbf{y}))$ Bayesian consistent for j = 2, 3, 4 only
- \Rightarrow expect to see evidence of merging only for j= 2, 3, 4
- Measure proximity of $p_{exact}(y_{T+1}|\mathbf{y})$ and $p_{ABC}(y_{T+1}|\mathbf{y})$ using:
 - RMSE of difference between the cdfs (\downarrow as T \uparrow)
 - Total variation between the cdfs (\downarrow as $T \uparrow$)
 - Hellinger distance between the cdfs (\downarrow as T \uparrow)
 - Degree of overlap between the pdfs (\uparrow as T \uparrow)
- All averaged over 100 replications of y

Q1: Example: MA(2); T=500, 2000, 4000, 5000



Q1: Example: MA(2); T=500, 2000, 4000, 5000



• Bayesian consistency in action!

Q2: Quantifying Loss of Accuracy?

- In summary:
 - Under Bayes consistency, $p_{ABC}(y_{T+1}|\mathbf{y})$ and $p_{exact}(y_{T+1}|\mathbf{y})$ equivalent for $T \to \infty$
 - Even for finite *T* (and lack of consistency) little difference discerned....
- Can we quantify accuracy loss?
- Let $S(p_{exact}, y_{T+1})$ be a proper scoring rule (e.g. the log score)
- Define expected score under the truth:

$$\mathbb{M}(p_{exact}, p_{truth}) = \int_{y \in \Omega} S(p_{exact}, y_{T+1}) \underbrace{p(y_{T+1} | \boldsymbol{\theta}_0, \mathbf{y})}_{P_{truth}} dy_{T+1}$$

Q2: Quantifying Loss of Accuracy?

- Theorem 2:: Under Bayes consistency for $p(\theta|\mathbf{y})$ and $p(\theta|\boldsymbol{\eta}(\mathbf{y}))$, if $S(\cdot, \cdot)$ is a strictly proper scoring rule:
- 1. $|\mathbb{M}(p_{exact}, p_{truth}) \mathbb{M}(p_{ABC}, p_{truth})| = o_{\mathbb{P}}(1);$
- 2. $|\mathbb{E}_{\mathbf{y}}[\mathbb{M}(p_{exact}, p_{truth})] \mathbb{E}_{\mathbf{y}}[\mathbb{M}(p_{ABC}, p_{truth})]| = o(1);$
- 3. 1. and 2. are exactly satisfied if and only if $\eta(\mathbf{y})$ is sufficient for \mathbf{y} .
 - Either:
 - 1. conditionally (on a given y) or
 - 2. unconditionally (over y)

• For $\mathcal{T} \to \infty$ approximate forecasting incurs no accuracy loss

• Other side of the merging coin

Q2: Quantifying Loss of Accuracy?

- What if we invoke more than Bayes consistency?
- Invoking the (**Cramer Rao**) efficiency of the **MLE** (relative to the **ABC** posterior mean):

$$\mathbb{M}(p_{exact}, p_{truth}) \geq \mathbb{M}(p_{ABC}, p_{truth})$$

 $\mathbb{E}_{\mathbf{y}}\left[\mathbb{M}(p_{exact}, p_{truth})\right] \geq \mathbb{E}_{\mathbf{y}}\left[\mathbb{M}(p_{ABC}, p_{truth})\right]$

 ⇒ for large (but finite) T would expect the exact predictive to yield higher scores than the approximate predictive!

Q2: Example: MA(2): T = 500

• Average predictive scores over 500 out-of sample values:

		ABC av	Exact av. score		
	$\eta^{(1)}(\mathbf{y})$	$\eta^{(2)}(\mathbf{y})$	$\eta^{(3)}(\mathbf{y})$	$\eta^{(4)}(\mathbf{y})$	
LS	-1.43	-1.42	-1.43	-1.43	-1.40
QS	0.28	0.28	0.28	0.28	0.29
CRPS	-0.57	-0.56	-0.57	-0.57	-0.56

- Loss is incurred by being approximate
- But it is negligible!
- (Including for 'non-consistent' $\eta^{(1)}(\mathbf{y}))$
- Computational gain?

•
$$p_{ABC}(y_{T+1}|\mathbf{y})$$
 : 3 seconds

•
$$p_{exact}(y_{T+1}|\mathbf{y})$$
 : 360 seconds!

Q3: ABC prediction in state space models?

• **True model** (for financial return, $y_t = \ln P_t - \ln P_{t-1}$), **SV**:

$$y_t = \sqrt{V_t}\varepsilon_t; \qquad \varepsilon_t \sim i.i.d.N(0,1)$$
$$\ln V_t = \theta_1 \ln V_{t-1} + \eta_t; \qquad \eta_t \sim i.i.d.N(0,\theta_2)$$
$$\bullet \ \theta = (\theta_1, \theta_2)'$$

• Auxiliary model, GARCH:

$$y_t = \sqrt{V_t} \varepsilon_t; \qquad \varepsilon_t \sim i.i.d.N(0,1)$$

$$V_t = \beta_1 + \beta_2 V_{t-1} + \beta_3 y_{t-1}^2$$

• Closed form for auxiliary likelihood $\Rightarrow \hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)'$ • $\Rightarrow \eta(\mathbf{y})$ and $\eta(\mathbf{z})$

Q3: ABC prediction in state space models?

• Exact:

$$p_{exact}(y_{T+1}|\mathbf{y}) = \int_{V_{T+1}} \int_{\mathbf{V}} \int_{\boldsymbol{\theta}} p(y_{T+1}|V_{T+1})$$
$$\times p(V_{T+1}|V_T, \boldsymbol{\theta}, \mathbf{y}) \underbrace{p(\mathbf{V}|\boldsymbol{\theta}, \mathbf{y})p(\boldsymbol{\theta}|\mathbf{y})}_{p(\mathbf{V}, \boldsymbol{\theta}|\mathbf{y})} d\boldsymbol{\theta} d\mathbf{V} dV_{T+1}$$

- MCMC used to draw from $p(\mathbf{V}, \boldsymbol{\theta} | \mathbf{y})$
- \Rightarrow independent draws from $p(V_{T+1}|V_T, \theta, \mathbf{y})$ and $p(y_{T+1}|V_{T+1})$

•
$$\Rightarrow \widehat{p}_{exact}(y_{T+1}|\mathbf{y})$$

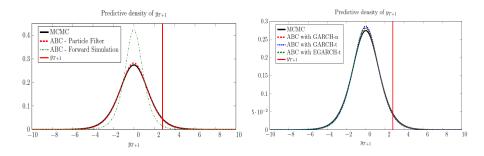
Q3: ABC prediction in state space models?

• ABC:

$$p_{ABC}(y_{T+1}|\mathbf{y}) = \int_{V_{T+1}} \int_{\mathbf{V}} \int_{\boldsymbol{\theta}} p(y_{T+1}|V_{T+1})$$

× $p(V_{T+1}|V_T, \boldsymbol{\theta}, \mathbf{y}) p(\mathbf{V}|\boldsymbol{\theta}, \mathbf{y}) p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y})) d\boldsymbol{\theta} d\mathbf{V} dV_{T+1}$

- ABC used to draw from $p(\pmb{ heta}|\pmb{\eta}(\mathbf{y}))$
- ullet \Rightarrow particle filtering used to integrate out V
- \Rightarrow yields full posterior inference (i.e. |y) on V_T
- Exact inference (MCMC) on $V_{1:T-1}$ not required



- Nature of ABC inference on θ of little importance.....
- \Rightarrow All $p_{ABC}(y_{T+1}|\mathbf{y}) \approx p_{exact}(y_{T+1}|\mathbf{y})!$
- What if condition V_T on η(y) only? i.e. omit the PF step? Inaccuracy!
- Need to get the predictive model: $p(y_{T+1}|V_{T+1})$ and $p(V_{T+1}|V_T, \theta, \mathbf{y})$ 'right'!

Q4: Empirical setting??

- Now to the hard bit.....
- Thus far? Have assumed:
 - **1** That the **DGP**: $p(y_{T+1}, \mathbf{y}, \theta) = p(y_{T+1}|\mathbf{y}, \theta)p(\mathbf{y}|\theta)$ is correct
 - 2 That we have access to $p(\theta|\mathbf{y}) \Rightarrow p_{exact}(y_{T+1}|\mathbf{y})$

• for assessment of $p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y})) \Rightarrow p_{ABC}(y_{T+1}|\mathbf{y})$

- In a realistic empirical setting:
 - We don't know the true DGP!!
 - **2** We are accessing $p_{ABC}(y_{T+1}|\mathbf{y})$ because we cannot (or it is too computationally burdensome) to access $p_{exact}(y_{T+1}|\mathbf{y})!$
 - **3** \Rightarrow **no benchmark** for $p_{ABC}(y_{T+1}|\mathbf{y})$

- What we CAN access though is **observed** y_{T+1} in a hold out sample
- ullet \Rightarrow if forecasting is the primary aim
- Why not choose $\eta(\mathbf{y})$ (and, hence, $p_{ABC}(y_{T+1}|\mathbf{y})$) according to actual predictive performance?

SV model with dynamic jumps and alpha stable errors

• Two measurement equations:

$$\begin{aligned} r_t &= \exp\left(\frac{h_t}{2}\right)\varepsilon_t + \Delta N_t Z_t; \ \varepsilon_t \sim N(0,1) \\ n BV_t &= \psi_0 + \psi_1 h_t + \sigma_{BV} \zeta_t \end{aligned}$$

• Three state equations:

$$\begin{split} h_t &= \omega + \rho h_{t-1} + \sigma_h \eta_t; \ \eta_t \sim \mathcal{S}(\alpha, -1, 0) \\ Z_t &\sim \mathcal{N}(\mu, \sigma_z^2) \\ \Pr(\Delta N_t = 1 | \mathcal{F}_{t-1}) &= \delta_t = \delta + \beta \delta_{t-1} + \gamma \Delta N_{t-1} \text{ (Hawkes)} \end{split}$$

- \Rightarrow no closed-form solution for $p(h_t|h_{t-1})$
- \Rightarrow run with ABC and approximate Bayesian forecasting.....

- Choose η(y) via four different GARCH-type auxiliary models supplemented with various statistics computed from high-frequency measures of volatility and jumps
- Compute average scores (for r_t and $\ln BV_t$) and over hold out sample of one trading year:

		Auxiliary model					
		GARCH-N	GARCH-T	TARCH-T	RGARCH		
	LS	-1.571	-1.280	-1.202	-1.945		
r _t	QS	0.377	0.474	0.515	0.274		
	CRPS	-1.515	-1.052	-0.989	-2.103		
	LS	-2.732	-2.757	-2.928	-2.827		
$\ln BV_t$	QS	0.095	0.049	0.016	0.094		
	CRPS	-2.038	-1.416	-1.377	-2.570		

- TGARCH with Student *t* errors, and various add-ons, the best overall!
- Uniformly so with predicting returns

- Questions remain though regarding the theoretical (asymptotic) properties of p_{ABC}(y_{T+1}|y) built from such a choice of η(y)
- Bayesian consistency of $p(\pmb{ heta}|\pmb{\eta}(\mathbf{y}))$ no longer sought
- \Rightarrow merging of $p_{ABC}(y_{T+1}|\mathbf{y})$ and $p_{exact}(y_{T+1}|\mathbf{y})$ no longer an automatic outcome
- However, under correct model specification: has been shown to provide an upper bound on the accuracy of $p_{ABC}(y_{T+1}|\mathbf{y})$
- \Rightarrow choosing $\eta(\mathbf{y}) \Rightarrow$ most accurate $p_{ABC}(y_{T+1}|\mathbf{y})$
- = choosing $p_{ABC}(y_{T+1}|\mathbf{y})$ that is closest to $p_{exact}(y_{T+1}|\mathbf{y})$

- Under mis-specification??
- Still makes perfect sense to pick the $p_{ABC}(y_{T+1}|\mathbf{y})$ with the best forecasting performance!
- What is unclear though is the relationship between $p_{exact}(y_{T+1}|\mathbf{y})$ and $p_{ABC}(y_{T+1}|\mathbf{y})$
- Indeed, in what sense does $p_{exact}(y_{T+1}|\mathbf{y})$ remain **preferable** to $p_{ABC}(y_{T+1}|\mathbf{y})$?
- Are there ways of producing **approximate predictives** that are **robust** to mis-specification?
-For another day......