Computing Bayes: Bayesian computation from 1763 to 2017!

Gael Martin

Department of Econometrics and Business Statistics

Monash University, Melbourne

Bayes on the Beach, November, 2017

- The Royal Society, London, December 23, 1763:
- Richard Price read:

An Essay Towards Solving a Problem in the Doctrine of Chances by Reverend Thomas Bayes

- Three years after Bayes' death
- 'Bayesian inference' has its birth......

• The question posed?

- If perform *n* Bernoulli trials, with $\theta = \text{probability of 'success'}$
 - Rolling a ball across a 'billiard' table n times
 - $\bullet \, \Rightarrow \,$ 'success' if ball lands within a particular distance from the edge
- And record: $\mathbf{y} = (1, 1, 0, 1, 0,0)'$

What is:

$$\Pr{ob(a < \theta < b | \mathbf{y})}?$$

• The answer offered?

$$\Pr{ob}(a < heta < b | \mathbf{y}) = \int_{a}^{b} p(\theta | \mathbf{y}) d heta$$

• where:

$$p(heta|\mathbf{y}) = rac{L(heta|\mathbf{y})p(heta)}{p(\mathbf{y})} = ext{posterior pdf}$$

with:

- First application (we think...) of 'inverse probability'
- Given a set of observations (y)
- Produced according to an assumed probability distribution
 - (Bernoulli here)
- Can we **invert** the problem to make a **probability statement** about the *unknown and unobservable θ*?
- \equiv 'Bayesian inference' in our modern language....

• Computational challenge??

÷ و

- **Closed-form** solution for $p(\theta|\mathbf{y})...(\mathbf{beta} \text{ density})$
- However:

$$\Pr{ob(a < heta < b|\mathbf{y})} = \int\limits_{a}^{b} p(heta|\mathbf{y}) d heta = `incomplete beta function`$$

- does not have a closed form!
- (and was not yet numerically tabulated!)
- And the fact that Bayes could not find an accurate numerical solution
- Has been proposed as a possible reason for his not publishing the work! (Stigler (1983) 'The History of Statistics')
- → computational issues a feature of 'Bayesian inference' from its birth!!

Reverend Thomas Bayes: 1701-1761:

• Why is a Presbyterian clergyman in the mid-1700's playing around with billiard balls and mathematics??

Protestant Reformation: 1517+

- October 31st 1517: Castle Church, Wittenberg, Germany
- Martin Luther (a monk) nails to the door: 95 'theses' or 'objections' to the workings of the Roman Catholic Church
- And so begins (the most publicized) break from the established Church of Rome
- The Swiss follow: Ulrich Zwingli, John Calvin (mid-1500s....)
- All 'reformers' or protesters'....creating the new **Protestant movement**
- Stepping outside of the authority of the Pope
- Advocating a more personal connection with God
- Including ordinary people appointing their own pastors

Protestant Reformation: 1517+

- Across the English Channel?
- Tumultuous time....
- Henry the 8th/Mary 1st/Elizabeth 1st
- 'Protestants' (Church of England variety...) have ascendancy under Elizabeth
- Simultaneously, in Scotland, Calvin's brand of Protestantism spreads
- \Rightarrow Presbyterians
- By Bayes time (1701-1761): 'Non-conformist' (e.g. Presbyterians) and Church of England clergy dotted throughout the British Isles
- \Rightarrow Reverend Thomas Bayes preaching in Tunbridge Wells (England) 1734 +

The Scottish Enlightenment (1700s/1800s)

- An 'easy' gig! (Bryson (2010) 'At Home: a Short History of Private Life'!!)
- The odd sermon on Sunday...
- A fair bit of spare time!
- Time to explore ideas
- 'Gentleman' scholars
- (Bayes had studied both theology **and mathematics** at the University of **Edinburgh**)
- Ideas; discovery; questioning; scientific experimentation valued in the time of the **Enlightenment**
-so what we see with Bayes all makes sense......

Pierre-Simon Laplace: 1749–1827

- But **Bayes** dies early
- Work eventually publicized by Price....but appears to have disappeared from view thereafter
- Then along comes **Pierre**.....

Pierre-Simon Laplace: 1749–1827

- Appears to have discovered 'Bayes Theorem' independently (1770 +)
- Applied method of **inverse probability** to several problems, with priors determined via more abstract reasoning
- Along the way introduced the Laplace (analytical) approximation to (Bayesian) integrals!
- \Rightarrow first computational solution to intractable Bayesian problems!!
- The method of **inverse probability** remained dominant in the 1800s
 - (Feinberg (2006), 'When did Bayesian Inference become "Bayesian"')

- Somewhat usurped in the 1900s by ('frequentist') notions of:
 - Maximum likelihood estimation and associated 'sampling properties' (Fisher, 1922)
 - Hypothesis testing/p-values/confidence intervals (Neyman/Pearson, 1930+)
- Despite works on 'Bayesian inference' by:
 - De Finetti (1930, 1937)
 - Jeffreys (1939)
 - Savage (1954)
 - Lindley (1965, 1971)
 - Arnold Zellner (1971)

State of Play in 'Bayesian Inference' in 1970s?

• Zellner, 1971: 'Bayesian Inference in Econometrics'

- Key aspects of coverage?
 - Gaussian (and associated) distributions dominate
 - natural conjugate priors
 - + non-informative (Jeffreys) priors
 - ullet \Rightarrow analytical solutions for **posterior moments**
 - ullet \Rightarrow analytical solutions for marginal posteriors
 - $\bullet\,\Rightarrow\,$ analytical solutions for marginal likelihoods
 - ullet \Rightarrow analytical solutions for **predictives**

State of Play in 'Bayesian Inference' in 1970s?

- Some use of **low-dimensional (deterministic) numerical** integration
- (+ use of numerical tabulations of common integrals)
- Some use of analytical approximations
- No mention of simulation-based computation.....
- However.....

State of Play in Bayesian Computation in 1980s?

- Assumed DGPs (models) are becoming more complex and high-dimensional; e.g:
 - full models of the economy
 - more complex time series (e.g. unit root/cointegration) models
 - latent variable (including state space) models
 - :
- Neither Bayes with deterministic numerical integration
- Nor Bayes with analytical approximations
- was viable as a general inferential method
- Plus, computers speeding up!
- Enter stage left: simulation-based computation......

What IS the computational challenge in Bayes?

• Virtually all quantities of interest in Bayesian statistics can be expressed as:

$$E(g(\theta)|\mathbf{y}) = \int_{\theta} g(\theta) p(\theta|\mathbf{y}) d\theta$$

• for some $g(\theta)$:

$$\begin{split} E(\boldsymbol{\theta}|\mathbf{y}) &= \int_{\boldsymbol{\theta}} \boldsymbol{\theta} p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} \\ p(\theta_1|\mathbf{y}) &= \int_{\boldsymbol{\theta}} p(\theta_1|\boldsymbol{\theta}_{-1},\mathbf{y}) p(\boldsymbol{\theta}_{-1}|\mathbf{y}) d\boldsymbol{\theta}_{-1} \\ \Pr ob(a < \boldsymbol{\theta} < b|\mathbf{y}) &= \int_{\boldsymbol{\theta}} \mathbf{I}_{(a < \boldsymbol{\theta} < b)} p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} \\ p(y_{T+1}|\mathbf{y}) &= \int_{\boldsymbol{\theta}} p(y_{T+1}|\boldsymbol{\theta},\mathbf{y}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} \\ \bullet \text{ all } \equiv E(g(\boldsymbol{\theta})|\mathbf{y}) \text{ for some } g(\boldsymbol{\theta}) \end{split}$$

What IS the computational challenge in Bayes?

- i.e implementing Bayes is all about evaluating integrals!!!
- $\equiv E(g(\theta)|\mathbf{y})$ for some $g(\theta)$
- Only when assuming simple models
 - and standard including natural conjugate priors
- will such integrals (\equiv expectations) be available in closed form!
- For most empirically realistic models
- The integrals need to be estimated in some way.....
- Three main options:

Bayesian Numerical Methods

1. Deterministic numerical integration methods:

$$\int_{\boldsymbol{\theta}} g(\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} = \int_{\boldsymbol{\theta}_1 \boldsymbol{\theta}_2} \int_{\boldsymbol{\theta}_p} g(\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta} \approx \sum_{j=1}^{G} \sum_{j=1}^{G} \dots \sum_{j=1}^{G} \dots$$

- Computational burden = G^p
- 'curse' of dimensionality
- \Rightarrow no good in high-dimensional case!

- 2. Analytical approximation of the integrand: \Rightarrow closed-form integrals
 - 'Laplace' method
 - Integrated Nested Laplace (INLA) method
 - Variational Bayes
 - All feasible, but only ever produce approximate results

3. Stochastic simulation (or sampling) methods

- With modern computing power: 'exact' solutions are attainable
- Plus: a very natural way of thinking about **the estimation of** an expectation
- \Rightarrow the dominant approach in the literature.....

• Given:

$$E(g(heta)|\mathbf{y}) = \int_{m{ heta}} g(m{ heta}) p(m{ heta}|\mathbf{y}) dm{ heta}$$

for some $g(\theta)$

- All simulation methods involve:
 - sampling from $p(\theta|\mathbf{y})$
 - and using that sample to estimate $E(g(\theta)|\mathbf{y})$
- From Statistics 101: we estimate a **population mean** with a **sample mean!!**
- So, at the end of the day we will (usually) do two simple things:

Overview

Construct a sample mean of some function of M posterior draws:

$$\overline{g(\boldsymbol{\theta})} = rac{1}{M} \sum_{j=1}^{M} g(\boldsymbol{\theta}^{(j)})$$

- (Legitimately) use frequentist concepts to:
 - Construct a standard error that measures the accuracy of $\overline{g(\theta)}$ as an estimate of $E(g(\theta)|\mathbf{y})$
 - WLLN \Rightarrow consistency of $g(\theta)$ as an estimate of $E(g(\theta)|\mathbf{y})$ (as $M \to \infty$)
 - CLT \Rightarrow asymptotic normality of $\overline{g(\theta)}$ (as $M \to \infty$)
- The hard part? Getting the draws from $p(\theta|\mathbf{y})!$

Independent sampling: Monte Carlo sampling

- An **independent** sample from $p(\theta|\mathbf{y})$ is ideal: each new draw brings 'fresh' information about $p(\theta|\mathbf{y})$
 - \Rightarrow high accuracy \equiv small (simulation) standard error
- Monte Carlo sampling produces an independent sample from $p(\theta|\mathbf{y})$ directly
 - Great when $p(\theta|\mathbf{y})$ is of a standard form but $E(g(\theta)|\mathbf{y})$ is not!
 - Think of Bayes and his beta probability!
- But complex model \Rightarrow complex $L(\theta|\mathbf{y}) \Rightarrow p(\theta|\mathbf{y})$ non-standard
- \Rightarrow for **realistic** models:

 $p(\theta|\mathbf{y})$ cannot be simulated from directly

• Enter importance sampling.....

Independent sampling: importance sampling

- Kloek and (Herman) van Dijk (1978)
- Dutch econometricians. Why?
- Back to the Protestant reformation!!
- **1568** the (mainly) Protestant Dutch threw off the their imperial overlord: the Catholic Spanish
- Struck out independently.....invented the powerful mercentile state
 - \Rightarrow a strong tradition in economics/econometrics
 - ullet \Rightarrow Econometric Institute of the Erasmus University Rotterdam
 - Kloek and van Dijk
- But back to the integrals!!!

- Importance sampling: Simple idea!
- Say have $q(\theta|\mathbf{y}) pprox p(\theta|\mathbf{y})$, and from which we can sample
- Estimate $E(g(\theta)|\mathbf{y})$ as

$$\overline{g(\boldsymbol{\theta})}^{lS} = \sum_{j=1}^{M} \left(g(\boldsymbol{\theta}^{(j)}) w(\boldsymbol{\theta}^{(j)}) \right) / \sum_{j=1}^{M} w(\boldsymbol{\theta}^{(j)})$$

• Using draws of θ from the importance density $q(\theta|\mathbf{y})$

• where:
$$w(oldsymbol{ heta}^{(j)}) = p^*(oldsymbol{ heta}^{(j)}|oldsymbol{y})/q(oldsymbol{ heta}^{(j)}|oldsymbol{y})$$

• for some **kernel** p^* of p:

۲

$$p(\theta|\mathbf{y}) = c \times p^*(\theta|\mathbf{y}) \propto L(\theta|\mathbf{y}) \times p(\theta)$$

Need to be able to evaluate $L(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)$

Independent sampling: importance sampling

- Great!! Problem solved??
- As long as we can write down the assumed **DGP** we are in business?
- Ummm.....how to choose $q(\theta|\mathbf{y})$ to 'match' $p(\theta|\mathbf{y})$ when θ is of high dimension???
- Light bulb moment!
- Why not break a **high**-dimensional problem down into a sequence of **lower**-dimensional problems??

- Geman and Geman (1984), Gelfand and Smith (1990)
- Simple (and **revolutionary**!) idea:
- Hard to sample from a (complex) joint posterior
- **Easier** to sample from (lower dimensional; simpler) **conditional** posteriors
- Why?
- Conditioning always makes life easier
- Something that is unknown is treated (temporarily....) as known
- + Low-dimensional problems easier to deal with

• E.g., say have
$$oldsymbol{ heta}=(oldsymbol{ heta}_1,oldsymbol{ heta}_2)'$$

$$p(oldsymbol{ heta}|oldsymbol{y})=p(oldsymbol{ heta}_1,oldsymbol{ heta}_2|oldsymbol{y})$$

- Draw θ_1 and θ_2 iteratively from $p(\theta_1|\theta_2, \mathbf{y})$ and $p(\theta_2|\theta_1, \mathbf{y})$
- Under regularity \Rightarrow yields draws from the **joint**: $p(\theta|\mathbf{y})$
- Cost??
- Drawing sequentially via the conditionals creates **dependence** in the sample
- \Rightarrow a Markov chain with invariant distribution equal to $p(\theta|\mathbf{y})$
- Gibbs an example of a Markov chain Monte Carlo (MCMC) algorithm

- ullet \Rightarrow Need to verify conditions for convergence to $p(m{ heta}|\mathbf{y})$
- \Rightarrow Need to monitor convergence (and 'burn-in') in practice.....
- $\bullet \Rightarrow \mathsf{Need}$ more draws to produce the same level of accuracy as an independent sample
- All that done though....once we have the draws we do the usual simple things with them
- (Standard error formulae simply reflect the dependence in the draws)
- Gibbs sampling a good starting point in many complicated models
- Exploits the simplicity that comes from conditioning

- Take, for e.g. a state space model
 - with 'static' parameters θ_1 and random parameters θ_2 $(\dim(\theta_2) \ge n!)$
- $p(heta_1, heta_2 | \mathbf{y})$ will not be amenable to analytical treatment
- But:
 - $p(\theta_1|\theta_2, \mathbf{y})$ is often simple (reflecting a **linear regression** structure)
 - $p(\theta_2|\theta_1, \mathbf{y})$ exploits filtering techniques
- Can also introduce **auxiliary** latent variables in order to produce simple conditionals
- ullet \Rightarrow integrated out via the Gibbs procedure.....
- ullet \Rightarrow draws on parameters of interest retained

- Introduced by Tanner and Wong (1987) as 'data augmentation'
- Note:

٥

۲

to be standard enough to be simulated from directly

 $L(\boldsymbol{\theta}|\mathbf{y}) \propto p(\mathbf{y}|\boldsymbol{\theta})$ needs to be available

- Important: even when DGP is available
- Typically, not **all** conditionals are standard and hence **can** be drawn from!
- (e.g. $p(\theta_2|\theta_1, \mathbf{y})$ in a non-linear state space model)
- Trick? Draw from it indirectly
- By inserting another MCMC chain within Gibbs:
- Metropolis-Hastings (MH)
 - Metropolis (1953) Los Alamos (US)....nuclear physicists....inventors of the atomic bomb.....
- Magic! Insertion produces a hybrid chain with p(θ|y) still the invariant distribution.....

Bayesian Simulation Methods Metropolis-Hastings (MH) (within Gibbs) sampling

- The thrust of **MH** within Gibbs (applied to $p(\theta_2|\theta_1, \mathbf{y})$ say)
 - Draw from $p(\theta_2|\theta_1, \mathbf{y})$ via a candidate $q(\theta_2) \approx p(\theta_2|\theta_1, \mathbf{y})$
 - (Note the dimension reduction via Gibbs.....)
 - Accept candidate draw of θ₂ with a probability that depends on the ratio:

$$\frac{p^*(\boldsymbol{\theta}_2|\boldsymbol{\theta}_1, \mathbf{y})}{q(\boldsymbol{\theta}_2|\boldsymbol{\theta}_1, \mathbf{y})}$$

Need to be able to evaluate $p^*(\theta_2|\theta_1, \mathbf{y}) \Leftrightarrow$

Need to be able to evaluate $L(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)$

٥

۰

Bayesian Simulation Methods Pseudo-marginal MCMC

۲

In summary.....all methods so far:

Require the evaluation of: $L(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)!!$

- What if this is not the case? E.g. continuous time models with unknown transitions (p(y_t|y_{t-1}, θ)?
- Or, if dim(\mathbf{y}) is so large in dimension that evaluation of $p(\mathbf{y}|\boldsymbol{\theta})$ (product of *n* terms....) is essentially infeasible??
- For some problems rescue comes via the magic of an unbiased estimate of p(y|θ)!
- and the use of so-called pseudo-marginal MCMC methods

Bayesian Simulation Methods Pseudo-marginal MCMC

• Say have some:

$$\widehat{p(\mathbf{y}|\boldsymbol{\theta})}$$

where:

$$E_{\mathbf{u}}\left[\widehat{p(\mathbf{y}|\boldsymbol{\theta})}\right] = p(\mathbf{y}|\boldsymbol{\theta})$$

- $\mathbf{u} =$ the auxiliary **random variables** underpinning the estimate
- and are intimately related to model-specific latent random variables
- Make this additional source of uncertainty explicit:

$$\widehat{p(\mathbf{y}|\boldsymbol{\theta})} = g(\mathbf{y}|\boldsymbol{\theta},\mathbf{u})$$

Bayesian Simulation Methods

Pseudo-marginal MCMC

• Apply usual trick \Rightarrow augment the 'unknowns' of the problem with u:

$$g(\theta, \mathbf{u}|\mathbf{y}) \propto g(\mathbf{y}|\theta, \mathbf{u})g(\mathbf{u})p(\theta)$$

- ullet \Rightarrow apply MCMC to the augmented space $(m{ heta},m{u})$
- \Rightarrow produce **marginal** inferences about heta
- ('**pseudo**' due to the true likelihood not being used....)
- What do we get?
- Is $p(\theta|\mathbf{y})$ the invariant distribution of an MCMC algorithm applied to (θ, \mathbf{u}) ?
- Yes! Due to the unbiasedness of likelihood estimate!
 - Beaumont, 2003, Andrieu and Roberts, 2009

Bayesian Simulation Methods Pseudo-marginal MCMC

- Pseudo-marginal applied in a state space model?
 - \Rightarrow particle filtering-based estimate of $p(\mathbf{y}|\boldsymbol{\theta}_1)$
 - \Rightarrow **u** = vector of uniforms driving the **particle filter**
 - \Rightarrow Particle MCMC (PMCMC) Andrieu et al. 2010

Releases the burden of having to

evaluate <u>all</u> components of $p(\mathbf{y}|\boldsymbol{\theta})$

- E.g. some filtering methods require only **simulation** from the *transition* densities
- But measurement densities still need to be evaluated (in the particle weights)

- Finally, pseudo-marginal MCMC has been applied specifically to reduce computational load associated with evaluating p(y|θ) when dim(y) is large
- 'Big data'
- Quiroz, Villani, Kohn and Tran 2017 subsample the data to produce an unbiased estimate of $p(\mathbf{y}|\boldsymbol{\theta})$

 $\bullet \Rightarrow \widehat{p(\boldsymbol{\theta}|\mathbf{y})}$

'Exact' Bayesian Inference

- All done??
- Have access to multiple simulation-based methods: MC/IS/MCMC/PM-MCMC
- to produce $p(\theta|\mathbf{y})$
- i.e. exact Bayesian inference (up to simulation error)
- But.....how to conduct posterior inference on heta when:
 - The DGP p(y|θ) is intractable in a way that precludes use of exact (including pseudo-marginal) methods?
 - Or the dimension of θ so large that exploration/marginalization infeasible via exact methods?
 - Or when the expertise to produce a finely-tuned efficient **exact** algorithm is not available?
- Can/must resort to approximate Bayesian inference

'Approximate' Bayesian Inference

- Goal then is to produce an approximation to $p(\theta|\mathbf{y})$:
 - (i) Approximate Bayesian computation (ABC)
 - (ii) Bayesian Synthetic likelihood
 - (i) and (ii) nested under 3. Simulation methods
 - (iii) Variational Bayes
 - (iv) Integrated nested Laplace (INLA)
 - (iii) and (iv) nested under 2. Analytical approximation methods

(i) Approximate Bayesian Computation

- Aim is to produce **draws** from an **approximation** to $p(\theta|\mathbf{y})$
- and use draws to estimate that approximation
- The simplest (accept/reject) form of the algorithm:
 - Simulate (θ^i) , i = 1, 2, ..., N, from $p(\theta)$
 - Simulate pseudo-data \mathbf{z}^{i} , i = 1, 2, ..., N, from $p(\mathbf{z}|\boldsymbol{\theta}^{i})$
 - 3 Select (θ^i) such that:

$$d\{\eta(\mathbf{y}), \eta(\mathbf{z}^i)\} \leq \varepsilon$$

- $\eta(.)$ is a (vector) summary statistic
- d{.} is a distance criterion
- $\bullet~$ the tolerance $\varepsilon~$ is arbitrarily small
- (Recent reviews: Marin, Publo, Robert and Ryder, 2011; Sisson and Fan, 2011; Drovandi, 2017)

(i) Approximate Bayesian Computation

Note:

۲

Evaluation of $L(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)$ is not required

Only simulation of $p(\mathbf{y}|\boldsymbol{\theta})$ is required

- In practice: $\eta(.)$ is never sufficient \Rightarrow
- i.e. $\eta(.)$ does not reproduce information content of **y**
- Selected draws (as $\varepsilon \to 0$) estimate $p(\theta|\eta(\mathbf{y}))$ (not $p(\theta|\mathbf{y}))$
- Selection of $\eta(.)$
- And hence, **proximity** of $p(\theta|\eta(\mathbf{y}))$ to $p(\theta|\mathbf{y})$ still an open and hot topic!
- More after tea!!!!

(ii) Bayesian Synthetic Likelihood

• ABC attempts to estimate $p(heta|\eta(\mathbf{y}))$ via simulation

• Given:

 $p(\boldsymbol{\theta}|\boldsymbol{\eta}(\mathbf{y})) \propto p(\boldsymbol{\eta}(\mathbf{y})|\boldsymbol{\theta}) p(\boldsymbol{\theta})$

• in essence ABC approximates $p(\eta(\mathbf{y})|\boldsymbol{\theta})$ via simulation, as:

$$p(\boldsymbol{\eta}(\mathbf{y})|\boldsymbol{\theta}) \approx rac{1}{N} \sum_{i=1}^{N} \mathcal{I}\left(d\{\boldsymbol{\eta}(\mathbf{y}), \boldsymbol{\eta}(\mathbf{z}^{i})\} \leq \varepsilon\right)$$

for the accept/reject version

- BSL (Price, Drovandi, Lee and Nott, 2017):
- Approximate $p(\pmb{\eta}(\mathbf{y})|\pmb{\theta})$ as:

 $p_{S}(\boldsymbol{\eta}(\mathbf{y})|\boldsymbol{\theta}) \approx N(\mu_{N}(\boldsymbol{\theta}), \boldsymbol{\Sigma}_{N}(\boldsymbol{\theta}))$

where $\mu_N(\theta)$ and $\Sigma_N(\theta)$ are computed from N simulated draws of $\eta(\mathbf{z})$ from $p(\mathbf{z}|\theta^i)$, for a given θ

- Draws from $p_S(\theta|\eta(\mathbf{y}))$ are obtained by embedding $p_S(\eta(\mathbf{y})|\theta)$ within (say) an MCMC algorithm
- Both ABC and BSL can thus be seen as versions of pseudo-marginal methods!
 - although inference is only ever conditional on $\eta(\mathbf{y})$ (not \mathbf{y})
 - and hence is only ever approximate.....
- Note, again:

Only simulation of $p(\mathbf{y}|\boldsymbol{\theta})$ is required

(iii) Variational Bayes

- Simultaneous with the development of new (simulation-based) approximation methods by statisticians/econometricians
- **Computer science/machine learning** community have been developing their own (deterministic) approximation tool:
- Variational inference/Variational Bayes
- In the spirit of calculus of variations \Rightarrow
- Approximate $p(\theta|\mathbf{y})$ by some $q^*(\theta) \in Q$ s.t:

$$q^{*}(\boldsymbol{\theta}) = \underset{q(\boldsymbol{\theta}) \in Q}{\arg\min} KL\left(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta} | \mathbf{y})\right) = E_{q(\boldsymbol{\theta})}\left[\log\left(\frac{p(\boldsymbol{\theta} | \mathbf{y})}{q(\boldsymbol{\theta})}\right)\right]$$

• Nice reviews by Ormerod and Wand, 2010 and Blei, Kucukelbir and McAuliffe, 2017

- Approximating $p(\boldsymbol{\theta}|\mathbf{y})$ via simulation replaced by
- Approximating $p(\boldsymbol{\theta}|\mathbf{y})$ via **optimization**
- Trade-off between:
 - Choosing q to be flexible enough to capture features of $p(\theta|\mathbf{y})$
 - Choosing *q* to be tractable enough to enable efficient optimization
- **Problem?** If don't know $p(\theta|\mathbf{y})$ how can we approximate it via:

$$q^*(oldsymbol{ heta}) = rgmin_{q(oldsymbol{ heta}) \in Q} {
m Argmin} KL\left(q(oldsymbol{ heta}) || p(oldsymbol{ heta}| {f y})
ight)???$$

• \Rightarrow minimizing *KL* \equiv maximizing:

$$E_{q(\boldsymbol{ heta})}\left[\log\left(rac{p(\mathbf{y}, \boldsymbol{ heta})}{q(\boldsymbol{ heta})}
ight)
ight]$$

• where $p(\mathbf{y}, \boldsymbol{\theta}) = p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})$ is (assumed to be) available!

(iii) Variational Bayes

• Further:

$$E_{q(\theta)}\left[\log\left(rac{p(\mathbf{y}, \mathbf{ heta})}{q(\mathbf{ heta})}
ight)
ight] \leq \log p(\mathbf{y}) = \int_{\mathbf{ heta}} p(\mathbf{y}|\mathbf{ heta}) p(\mathbf{ heta}) d\mathbf{ heta}$$

 \bullet \Rightarrow a lower bound for the marginal likelihood (or 'evidence')

- used as an approximation to $p(\mathbf{y})$
 - which would typically be approximated as an additional step in simulation (e.g. MCMC) settings
- Critically: to implement VB:

Evaluation of $p(\mathbf{y}|\boldsymbol{\theta})$ is required!

(iii) Variational Bayes

- Note however!
- Barthelme and Chopin, 2014, 'Expectation-Propagation for Likelihood-Free Inference'
 - Use of VB principles to implement ABC
- Tran, Nott and Kohn, 2106, 'Variational Bayes with Intractable Likelihood'
 - Use an **unbiased estimate** of $p(\mathbf{y}|\boldsymbol{\theta})$ within **VB**
- Ong, Nott, Tran, Sisson and Drovandi, 2106, 'Variational Bayes with Synthetic Likelihood'
 - Use a synthetic likelihood estimate of $p(\mathbf{y}|\boldsymbol{\theta})$ within **VB**
 - ۲

All loosen the requirements on the tractability of $p(\mathbf{y}|\boldsymbol{\theta})$

(iv) INLA Remember Pierre?

• Yet *another* stream of **approximate inference** builds on **Pierre's** simple idea for approximating an integral:

$$\int_{X} e^{\{nf(x)\}} dx \approx e^{\{nf(\widehat{x})\}} \int_{X} e^{\left\{\frac{-n|f''(\widehat{x})|}{2}(x-\widehat{x})^{2}\right\}} dx$$
$$= e^{\{nf(\widehat{x})\}} \sqrt{\frac{2\pi}{n|f''(\widehat{x})|}}$$

- **Optimization** needed to obtain \hat{x}
- Building on Laplace (1774) and Tierney and Kadane, 1986
- Rue, Martino and Chopin, 2009
- apply this idea to a very broad class of models:
- 'latent Gaussian models' (or 'Gaussian process models')

- \Rightarrow Integrated Nested Laplace (INLA) approx. of $p(\theta|\mathbf{y})$
 - A combination of (nested) Laplace (LA) approximations
 - $\bullet\,$ Plus a (low-dimensional) numerical integration (IN) step
- Again: INLA (like VB) amounts to replacing simulation by optimization
 - \Rightarrow much attention given to the matter of **numerical opt.** in the given model class
 - The **optimization** in **INLA** being over a high dimensional vector of latent states....
- Critically, the application of **INLA**:

Requires the evaluation of $p(\mathbf{y}|\boldsymbol{\theta})!$

• (Augmentation with other methods for dealing with the case where $p(\mathbf{y}|\boldsymbol{\theta})$ is **intractable** is surely possible......)

The 21st Century and Beyond?

- So.....where are we heading now?
- What does this wealth of computational developments mean: for the future of statistical inference?
- Back in 2008 I had just finished reading: 'The Story of French'
- An historical perspective on the language and its place in the world
- Coincidentally, I was asked to name and chair a debate between Christian Robert (Bayesian) and Russell Davidson (frequentist), entitled:

The 21st Century Belongs to Bayes

• Certain analogies between language and statistical paradigm became clear!

The 21st Century and Beyond?

۲

French = Linga franca until 20th century

- = characterized by clear, coherent rules of grammar
- = characterized by a strong sense of correct usage
- = Bayesian inferential paradigm!

۲

- English = Linga franca in 20th century +
 - = evolved quite differently
 - = freely borrowing from many other languages
 - = an amalgam of different approaches and structures
 - = Classical/frequentist inferential paradigm!

- According to the last chapter in The Story of French',
- the authors bravely assert that **in the 21st century** the elegant, logical and coherent language of French may regain its preeminence!
- Is it the same with **Bayes** ???
- In particular now armed as it is with this immense array of new computational tools!

The 21st Century and Beyond?

- So elegance and coherence in approach:
- Quantifying uncertainty about what is **unknown** conditional on what is **known** using the language of probability: $p(\theta|\mathbf{y})$
- Underpinned by the ability to compute $p(\theta|\mathbf{y})$
- Whether 'exactly' or in some 'approximate' fashion
- in almost every imaginable situation.....
- Surely, our man in 1700's England with the billiard balls and the time to explore ideas.....
- Is now our man for the 21st century and beyond.....