
Dual-purpose Bayesian design for parameter estimation
and model discrimination of models with intractable

likelihoods

M. B. Dehideniya 1 C. C. Drovandi 1,2 J. M. McGree 1,2

1School of Mathematical Sciences
Queensland University of Technology

Australia

2ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)

Bayes on the Beach - 2017

1



Experimental design in Epidemiology
Spread of a disease within a herd of cows.(eg.Foot and mouth disease)

Competing models - SIR (Orsel et al., 2007) and SEIR (Backer et al.,
2012)

Not practical to continuously observe the process.
A set of distinct observational times {t1, t2, ..., tn} - Design.
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Background
Bayesian experimental designs

Consider Bayesian design,
I due to the availability of important utilities (total entropy).
I to appropriately handle uncertainty about models and parameters.

Assume Bayesian inference will be undertaken upon observing data.
Optimal design - d∗ = arg maxd u(d), where

u(d) =
K∑

m=1
p(m)

∫
y

u(d , y ,m)p(y |d ,m)dy .

u(d , y ,m) is some measure of information gained from d given model
m and observed data y .
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Background
Bayesian experimental designs

In most cases, u(d) cannot be solved analytically.

But it can be approximated, e.g., Monte Carlo integration,

u(d) ≈
K∑

m=1
p(m) 1

B

B∑
b=1

u(d , ymb,m),

where ymb ∼ p(y |θmb,m,d) and θmb ∼ p(θ|m).
Here, some posterior inference is required to evaluate u(d , ymb,m).
Hence, K × B posterior distributions need to be approximated or
sampled from to approximated u(d).
Computationally challenging task,

I approximating the expected utility;
I maximising the utility.
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Total entropy

The total entropy utility function can be defined as follows:

uT (d , y ,m) =
∫

θ
p(θ|m, y ,d) log p(y |θ,m,d)dθ − log p(y |d).

In general, total entropy is a computationally challenging utility.
Limited use (Borth, 1975 and McGree, 2017).
Difficult to evaluate p(y |θ,m,d) for models with intractable
likelihoods.
Hence, p(θ|m, y ,d) and log p(y |d) are more difficult to approximate.
Motivates the use of a synthetic likelihood approach.
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Other utilities
Estimation (KLD) (McGree, 2017).

uP(d , y ,m) =
∫

θ
p(θ|m, y ,d) log p(y |θ,m,d)dθ − log p(y |m,d).

Model discrimination (Drovandi, McGree, Pettitt, 2014).

uM(d , y ,m) = − log p(m|y ,d).

Difficult to evaluate p(y |θ,m,d) for models with intractable
likelihoods.
Hence, p(θ|m, y ,d) , log p(y |m,d) and log p(m|y ,d) are more
difficult to approximate.
Motivates the use of a synthetic likelihood approach more generally
than just with total entropy.

6



Other utilities
Estimation (KLD) (McGree, 2017).

uP(d , y ,m) =
∫

θ
p(θ|m, y ,d) log p(y |θ,m,d)dθ − log p(y |m,d).

Model discrimination (Drovandi, McGree, Pettitt, 2014).

uM(d , y ,m) = − log p(m|y ,d).

Difficult to evaluate p(y |θ,m,d) for models with intractable
likelihoods.
Hence, p(θ|m, y ,d) , log p(y |m,d) and log p(m|y ,d) are more
difficult to approximate.

Motivates the use of a synthetic likelihood approach more generally
than just with total entropy.

6



Other utilities
Estimation (KLD) (McGree, 2017).

uP(d , y ,m) =
∫

θ
p(θ|m, y ,d) log p(y |θ,m,d)dθ − log p(y |m,d).

Model discrimination (Drovandi, McGree, Pettitt, 2014).

uM(d , y ,m) = − log p(m|y ,d).

Difficult to evaluate p(y |θ,m,d) for models with intractable
likelihoods.
Hence, p(θ|m, y ,d) , log p(y |m,d) and log p(m|y ,d) are more
difficult to approximate.
Motivates the use of a synthetic likelihood approach more generally
than just with total entropy.

6



Synthetic likelihood approach
Wood (2010) approach - p(y |θ,m,d))
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Synthetic likelihood approach

Counts will be observed from our experiments.

Extension for discrete data.
In our case, no summary statistics are considered (mean and variance
of simulated data).
Idea: the Normal distribution via continuity correction.
Likelihood for discrete data is thus:

pSL(Y = y |θ,m,d) = p(y1− c < Y 1 < y1 + c, . . . , yp − c < Y p < yp + c),

where (Y 1, . . . ,Y p) ∼ N(µ̂(θ,m,d), Σ̂(θ,m,d)), c = 0.5 .
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Approximating utility functions
Marginal likelihood can be approximated as follows:

p̂(y |m,d) = 1
B

B∑
b=1

pSL(y |θb,m,d),

where θb ∼ p(θ|m).

Also for p(y |d)

p̂(y |d) =
K∑

m=1
p̂(y |m,d)p(m).

Then, posterior model probabilities:

p̂(m|y ,d) = p̂(y |m,d)p(m)
p̂(y |d) .
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Approximating utility functions

Employ importance sampling for approximating posterior
distributions.

Use prior as importance distribution.
Sample θb ∼ p(θ), b = 1, . . . ,B (equal weights).
Update weights via synthetic likelihood to yield Wb; the normalised
importance weights.
p(θ|y ,m,d) can be approximated by the particle set:

{θb,Wb}Bb=1.
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Approximating utility functions

Estimation:

ûP(d , y ,m) =
B∑

b=1
W b

m log p̂(y |θb,m,d)− log p̂(y |m,d).

Discrimination:

ûM(d , y ,m) = log p̂(m|y ,d).

Total entropy:

ûT (d , y ,m) =
B∑

b=1
W b

m log p̂(y |θb,m,d)− log p̂(y |d).
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SIR model

Given that at time t there are s susceptibles and i infectious individuals in
a closed population of size N, then the probabilities of possible events in
the next time period ∆t are

a Susceptible becomes an Infectious individual

P
[
s − 1, i + 1|s, i

]
= β s i

N ∆t +O(∆t),

an Infectious individual gets Recovered

P
[
s, i − 1|s, i

]
= αi ∆t +O(∆t).
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SEIR model

The probabilities of possible events in the next time period ∆t are
a Susceptible becomes an Exposed individual

P
[
s − 1, e + 1, i |s, e, i

]
= β s i

N ∆t +O(∆t),

an Exposed individual becomes an Infectious individual

P
[
s, e − 1, i + 1|s, e, i

]
= αIe ∆t +O(∆t),

an Infectious individual gets Recovered ,

P
[
s, e, i − 1|s, e, i

]
= αR i ∆t +O(∆t).
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Application
Prior predictive distribution under SIR and SEIR models (prior for SEIR
model taken from Backer et al., 2012).

SEIR : β ∼ LN(0.44, 0.162), αI ∼ G(25.55, 0.02), αR ∼ G(7.25, 0.04).

SIR: β ∼ LN(−0.09, 0.192), α ∼ G(10.30, 0.02).
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Optimal designs
Refined coordinate exchange algorithm (Dehideniya et al., 2017)

Utility Function Optimal design
d ∗ U(d ∗)

KLD

(11.6) 0.91
(9.4, 19.1) 1.27

(7.4, 14.2, 27.1) 1.47
(7.3, 10.9, 16.4, 27.1) 1.60

MI

(3.1) -0.43
(4.1, 16) -0.34

(0.7, 4.1, 18.4) -0.30
(0.7, 4.1, 10.1, 25.3) -0.28

TE

(7.0) 0.97
(6.7, 17.5) 1.56

(6.5, 13.5, 27.1) 1.81
(5.5, 10.8, 16.3, 27.1) 1.97
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Performance of optimal designs in model discrimination
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Performance of optimal designs in parameter estimation
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Discussion

Approach to design experiments for models with intractable
likelihoods.

Flexible in that a variety of utility functions can be efficiently
estimated.
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Future research

Is the normal approximation reasonable, in general? (Other
distributions were considered.)

How small can the sample size (no. of individuals) be?
How to extend this method for high dimensional Bayesian design
problems for models with intractable likelihoods?

I Suitable posterior approximations.
I Possible computational resources (GPU).
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