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Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods [1] can be powerful alternatives to
Markov chain Monte Carlo (MCMC) methods [7] for performing inference on
static Bayesian models. SMC methods are adaptive, parallelisable and are more
capable of dealing with multimodal or complex targets.
Assume there is data y and interest is in a statistical model parameterised by
θ. Likelihood annealing SMC traverses a population of N particles through a
sequence of distributions defined by the power posteriors

πt(θ|y ) ∝ f (y |θ)γtπ(θ),

where 0 = γ0 < γt < γT = 1 and 0 < t < T . A weighted particle set targeting
πt is represented by {W i

t ,θ
i
t}Ni=1 where W i

t is a normalised weight.
The effect of the likelihood is introduced smoothly through the following steps:
I Reweighting the particle set to target πt+1. The new unnormalised weights

are

w i
t+1 = W i

t f (y|θi
t)
γt+1−γt, for i = 1, . . . ,N .

I Resampling.
I Diversifying the particles, often via several iterations of an MCMC kernel

with a multivariate normal random walk (RW) proposal.

Evidence Estimation in SMC

The log evidence can be estimated using the stepping stone (SS) identity

l̂og Z =
T∑
t=1

logEπt−1(θ|y)[f (y|θ)γt−γt−1], (1)

or with the thermodynamic identity (TI)

log Z =

∫ 1

0

Eπt[log f (y|θ)]dγ, (2)

which gives the log evidence as an integral with respect to the temperature γ
[8]. We use a 2nd order quadrature approximation [2] for the integral in (2).

Using Derivative Information

The motivation for using the derivatives ∇θ log πt(θ|y ) is that we would like to
achieve the same level of precision with fewer likelihood evaluations.
Choice of Move Kernel
Using efficient move kernels leads to a higher acceptance rate and therefore
fewer log likelihood evaluations.
Metropolis-adjusted Langevin algorithm (MALA, [3]) is an alternative to the
popular RW proposal and it uses ∇θ log πt(θ|y ):

qφt(θ∗|θi
t) = N (θ∗;θi

t +
h2
t

2
Ĝ−1
θ,t∇θ log πt(θ|y ), h2

t Ĝ
−1
θ,t ),

where the term Ĝθ,t is a local measure of curvature for the log posterior and is
referred to as the metric tensor. We learn h from the population of particles.
The results in this poster are based on using the empirical covariance matrix for
Σ̂t for Ĝ−1

t but if the second derivatives, ∇2
θ log πt(θ|y ) ∈ Rd×d , are available,

these can be used to compute the observed or expected Fisher-Rao metric
tensor Ĝθ,t at θi

t (MMALA,[3]).
Post-hoc Adjustment
Control variates can be used to get lower variance estimators of expectations
Eπt(θ)[ϕ(θ)]. The general framework for control variates is to determine an
auxiliary function ϕ̃(θ) = ϕ(θ) + h(θ) such that Eπt[ϕ̃(θ)] = Eπt[ϕ(θ)] and
Vπt[ϕ̃(θ)] < Vπt[ϕ(θ)], where Vp(θ) denotes the variance with respect to
target p(θ). This can be achieved by choosing some random variable which is
correlated with ϕ(θ) and has a known expectation. Here we use zero-variance
control variates (ZV-CV, [6]), which require only the derivative of the log
target or some unbiased estimator of this quantity.
We apply ZV-CV to all expectations in (1) and (2).

Recapture Example

Here we estimate the parameters of a Cormack-Jolly-Seber model based on the
capture and recapture of a bird species [5]. The parameters are
θ = (φ1, . . . , φ5, p2, . . . , p6, φ6p7), where φi represents the probability of
survival from year i to year i + 1 and pk represents the probability of being
captured in year k . The likelihood for the model is

f (y |θ) ∝
6∏

i=1

1−
7∑

k=i+1

φipk

k−1∏
m=i+1

φm(1− pm)

Di−
∑7

k=i+1 yik 7∏
k=i+1

[
φipk

k−1∏
m=i+1

φm(1− pm)

]yik

,

where Di is the number of birds released in year i and yik is the number of
animals caught in year k out of the number released in year i . U(0, 1) priors
are used and all parameters are transformed to the real line for the move step.
Results: 100 SMC runs with N = 1000 particles are performed. The figure
below shows the improvement in posterior and evidence estimation that can be
achieved with derivative information. RW uses between 1.5 and 25 times the
number of log likelihood calculations that MALA uses.
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Figure: Performance with and without derivatives for posterior and log evidence estimation.

Factor Analysis Example

[4] use factor analysis models for data Y related to the exchange rate of 6
currencies relative to the British pound. The factor analysis models assume
that Y ∼ N (0,Ω). To reduce model complexity, Ω is parameterised by

Ω = ββT + Σ,

where β is a 6× k lower triangular matrix with positive diagonal elements and
Σ is a 6× 6 diagonal matrix with positive elements. Here k is the number of
factors. The prior and further details on this model can be found in [4].

-2 -1 0 1 2
0

0.5

1

1.5

2
Gold Standard
RW
MALA

(a) Marginal posterior estimate for β62 in the 3

factor model

1 Factor 2 Factors 3 Factors

M
od

el
 P

ro
ba

bi
lit

y

0

0.2

0.4

0.6

0.8

1
RW

SS

RW
TI

MALA
SS

MALA
TI

(b) Estimated model probabilities - dotted line

shows gold standard

Figure: Performance with and without derivatives for posterior estimation and model choice.

Results: 100 SMC runs with N = 10, 000 particles are performed. MALA
improves exploration for some of the more complex marginals (e.g. Figure (a)
above), while using roughly half the number of likelihood evaluations of RW.
The most accurate and precise model choice probabilities are obtained with
MALA and ZV-CV. Again, we found that the SS and TI log evidence
estimators are remarkably similar.

Ongoing and Future Work

I MMALA - making use of the second derivatives
I control functionals for improved convergence
I an example with a nonlinear ordinary differential equation
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