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Introduction 
Model selection is a key statistical process 
because it highlights important variables and 
relationships.  In addition, by reducing the 
number of parameters to be estimated it 
improves estimation for the remaining 
parameters.  For a precision matrix, this 
looks like: 
 
 
 
 
 
Or, visualize the matrix as a graph, with 
edges representing non –zero elements. 
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Searching or sampling over space of sparse 
matrices is computationally intensive.  For 
precision matrices, even after the effort to 
sample a posterior over  the  space of 
sparse matrices, the resulting Bayes 
estimate is typically not sparse. The fit to 
future data (based on log likelihood) is: 
 
 
 
 
 
Which has its expected value maximized at 
 
 
 
•  Actual fit of this estimate is a random 

variable governed by the posterior 
predictive distribution [1].  

•  Consider top 95% of this distribution, 
seeking a sparser choice for Γ with fit still 
in this range. 

•  This methodology is applicable to any 
posterior over precision matrices, even if 
the sampled matrices have no zero 
elements.    

•  Can also be used to consider differences 
in precision matrices.  

Methods of  “sparsifying” the 
posterior mean 
Set elements to zero if  
•  Partial correlation (ρ) less than X 
•  X% credible interval  includes zero 
•  Ratio with estimate based on conjugate 

Wishart prior is less than X 
•  Adaptive Lasso with shrinkage parameter 

X 
In each case, find best Γ with specified zero 
structure.  Vary X  to see how the fit is 
impacted. Select the sparsest model in the 
blue envelope. 
  
Example: Fecal Volatilome control data:  
•  Posterior generated using Bayesian 

Adaptive Lasso [3,4] 
•  Samples all dense precision matrices. 
•  Credible interval method produces 

sparsest graphs (red triangles). 
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Sparse estimates from dense precision matrix posteriors 
Application to Organic Acids data    
Edges annotated with corresponding partial 
correlations.  JGL produced the consensus 
graph on the right, which is still in the 95% fit 
window. 
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Example Data:  
Fecal Volati lome: 174 compounds 
measured by mass spectrometry of fecal 
samples.   
•  Control group: 49 8-year-old children 

born at term.   
•  42 Cases, children of the same age born 

pre-term. 
Organic Acids: 7 organic acids measured 
in 3 groups of roughly 30 people each [2]:   
•  HIV positive (with treatment) and obese,  
•  HIV positive (with treatment) with normal 

weight,   
•  HIV negative and obese.  

 

Finding sparse matrix differences 
Interested in how (if) precision matrix differs 
across C conditions (eg case/control).  
•  Generate independent posteriors for each 

condition. 
•  Fit = sum of fits across conditions, 

weighted by sample size.  
•  No ready algorithm to find best fitting, 

positive definite matrices obeying a 
particular set of constraints (eg, constrain 
elements corresponding to overlapping 
credible intervals to be the same).   

•  Joint Graphical Lasso (JGL) [5] used 
instead to sparsify difference. L1 penalty 
on matrix differences (λ2) and size of off 
diagonal elements(λ1). We found use of 
an adaptive penalty crucial: 

 
 
 
 
•  Benefit of starting with sparsified matrices 

(share some zero elements). Starting 
graphs for each condition chosen via 
credible interval method, but in top 60% 
of fit.    

•  λ1 ensures common zeros maintained as 
other parts of the matrix are modified.  

Application to fecal volatilome data    
Same strategy applied to higher dimensional 
dataset.  

è 

Conclusion    
•  Sensible sparse estimates can be produced 

from (potentially more tractable) posteriors 
over dense matrices. 

•  Readily extended to the case of differences 
in the precision matrix across conditions. 


