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Bayesian experimental design provides rules to allocate             

resources optimally for the collection of data for experimental 

goals such as parameter estimation, model discrimination,    

and/or prediction. Research in this area is mostly restricted to 

experiments which yield a univariate response or a small class of 

multivariate responses. Copula models provide a flexible way of 

constructing multivariate distributions for a wide range of    

multiple responses. Unfortunately, such models have rarely been   

considered in the  experimental design context due to the lack of 

developed methodology and approaches to overcome computa-

tional challenges in dealing with a large variety of multivariate 

distributions. 

 

Due to the flexibility of Copula models to describe a wide range 

of dependence outcomes and the computational efficiencies 

gained through using the sequential Monte Carlo (SMC)              

algorithm, we propose the combination of the two can be used 

to locate Bayesian designs for experiments which yield multiple 

responses. We demonstrate our approach by deriving designs 

for the dual objectives of model discrimination and parameter 

estimation for experiments with mixed outcomes. 

 

 

 
 

In a multivariate setting, Sklar's theorem states that there exists 

a function C:[0,1]d→[0,1] between the multivariate cumulative    

distribution function (CDF) G(y1,y2,…,yd) and their correspond-

ing marginal CDFs u1=F1(y1),u2=F2(y2),…,ud=Fd(yd) such that,       

G(y1,y2,…,yd)=C(u1,u2,…,ud). 

 

The theorem also states that, if all the marginals are continuous, 

then C is unique; otherwise, C is uniquely determined on the    

Ran(F1)×Ran(F2)×...×Ran(Fd) which is the Cartesian product of 

the ranges of marginals. 

 

 

 
 

Suppose a random variable Y1 and another random variable Y2 

are both continuous outcomes having the marginal distributions 

fY1  and fY2 , respectively, then the Copula representation of the 

joint density is given by 

 

 
 

If one of the random variables is discrete (say Y2), the joint    

density can be expressed as 

 

 
 

 
 limit of u2. 
 

If the discrete random variable (Y2) is a binary outcome, the joint 

distribution of Y1 and Y2 can be expressed as 

 

 
 

Therefore, the log-likelihood for a single observation is given by 

 

 
 

 

 
 

 To facilitate efficient Bayesian inference in sequential settings, 

we adopt the SMC algorithm (Drovandi et al., 2014). 

Copulas 

Copula models for bivariate mixed outcomes 
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Bayesian sequential design 

 

 
 

Figure 2: The quartiles of the log-determinant of the posteri-

or variance-covariance matrix for each design point over the 

500 simulations. 

 

 
 

Figure 3: The distribution of the posterior model probabili-

ties of the true Copula model, with optimal designs (row 1) and 

random designs (row 2), over 500 runs for 225 subjects. 

 

 The distribution of selected optimal doses is similar for all 

Copula models despite the fact that the dependency structure 

of one Copula can be significantly  different from another  

Copula. 
 

 The total entropy utility function appears to estimate parame-

ters equally well when compared to the random design for all 

Copula models. 
 

 The optimal design did not show a significant gain over      

random design in terms of discriminating between Copula 

models. Similar results were found in McGree (2017) for a 

one dimensional design problem. 

  

 

 
 

 The parameter estimation results revealed that it is possible 

to efficiently estimate model parameters across many differ-

ent Copula models. 
 

 In cases where Copulas induce similar dependence between 

the responses, it can be challenging to determine which model 

is preferred. This was observed in this example when the 

Frank and Gaussian Copulas were considered. 
 

 It may be more appropriate to only consider one Copula 

function to describe a particular form of dependence ra-

ther than considering multiple Copulas with only subtle 

differences in the dependence structure. 
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 Motivated by the work of Tao (2010), we assess the perfor-

mance of this design approach in finding optimal doses for a 

clinical trial of Angiotensin-converting enzyme (ACE)          

inhibitors for prevention of hypertension and heart failure.  
 

 Different Copula models were fitted to combine the continu-

ous efficacy outcome with the binary toxicity outcome.  
 

 The efficacy outcome is the change of diastolic blood     

pressure from baseline which follows a Normal distribution 

based on an E-max model as follows 

,  
 

 The toxicity outcome measures whether the glomerular    

filtration rate (GFR) decrease from baseline is greater than 

a threshold value. If so, then this is considered a success    

otherwise it is a failure. 

 ,  
 

 This study was undertaken in the following design space 

with only a fixed number of doses being available. That is,  

 
 

 All Copula parameters (except for the Gaussian Copula) 

were set to 20. We set the Gaussian Copula parameter to 0.9 

to impose a similarly strong positive association between 

the two outcomes. 
 

 For optimal design selection, the total entropy utility (Borth, 

1975; McGree, 2017) was implemented within the SMC       

algorithm. 
 

Table 1:  Prior distributions of the model parameters and 

the Copula parameters. 

 
 

 

 
 

 
 

Figure 1: The distributions of the selected designs under 

each Copula model. 
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