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Introduction

One possibility to model spatial extremes is via max-stable processes. Our aim is to
perform Bayesian model selection concerning the spatial dependence structure.

For moderate to large dimensions, max-stable models are intractable. We suggest a
model selection procedure based on approximate Bayesian computation (ABC) using a
semi-automatic summary selection scheme inspired by Fearnhead and Prangle (2012).

Max-stable processes

The spectral representation of a max-stable process {Z(x),x ∈ X} with unit Fréchet
margins is

Z(x) = max
i≥1

ζiYi(x), x ∈ X ⊆ R
d,

where the ζi are Poisson process points on (0,∞) with intensity dΛ(ζ) = ζ−2dζ , and
the Yi(x) follow a non-negative stochastic process Y (x) with E[Y (x)] = 1.

The different max-stable models differ in the specification of Y (x). We consider four
models: the extremal-t model with Whittle-Matérn, Cauchy, and powered exponential
correlation function, and the Brown-Resnick model. We also incorporate geometric
anisotropy into all models.

All models have a range (c2) and a smoothness (κ) parameter and two parameters
controlling the geometric anisotropy (rotation angle (α) and principal axes ratio (r) of
the confidence ellipse). In addition, the extremal-t models feature a degrees of freedom
parameter (ν).

Semi-automatic ABC for model selection and
parameter estimation

Our aim is to generate draws from the joint ABC posterior of the model indicator and
the parameters:

πǫ(φk, k| z) ∝ Pr(M = k) π(φk|M = k)

∫

u

fk(u|φk) 1{dT (z,u) < ǫ} du.

We use the sequential Monte Carlo ABC replenishment algorithm of Drovandi and
Pettitt (2011) to obtain samples from πǫ(φk, k| z).

To select suitable ABC summary statistics for parameter estimation and model selec-
tion, we employ the semi-automatic selection schemes of Fearnhead and Prangle (2012)
and Prangle et al. (2014). They propose to use estimates of the posterior means of the
parameters as ABC summary statistics for parameter estimation and to use estimates
of the posterior model probabilities as ABC summary statistics for model selection.

The estimates are obtained by using predictions from regressions run on a large sample
from the prior predictive distribution. Linear regressions are used to regress the indi-
vidual parameter samples on a large set of potentially informative regression summary
statistics computed from the simulated observations, while multinomial logistic regres-
sion is used to regress the model indicators on the same set of regression summary
statistics. Superfluous regression summary statistics are eliminated via a stepwise
procedure.

The discrepancy functions for model selection and parameter estimation are

dM(z,u) =

K−1∑

k=1

[
P̂r(M = k| z)− P̂r(M = k|u)

]2
,

dP (z,u) =

K−1∑

k=0

Qk∑

j=1

[
φ̂k,j(z)− φ̂k,j(u)

ŝd(φ̂k,j)

]2

,

and the overall discrepancy function is

dT (z,u) = log {dM(z,u) · dP (z,u)} .

Implementation details

The data set comprises annual maximum temperature measurements obtained at 25 weather stations
in South Australia from 1979 to 1996.

The set of regression summary statistics includes: group means and standard deviations of grouped
estimates of pairwise F-madograms, pairwise and tripletwise extremal coefficients, and pairwise extremal
concurrence probabilities, as well as composite score vectors for the parameters of all models.

Prior distributions: log (c2) ∼ N (1, 4), κ ∼ U(0, 2), α ∼ U(0, π/2), log(r) ∼ N (0, 8),
log(ν) ∼ N (0, 1) truncated on [−2.5, 2.5].

FP step: 2,500 simulations from each model from the prior predictive distribution.

SMC ABC step: N = 2,000 particles.

FP step

Misclassification matrix obtained by FP step:

Pr(k = 1|j) Pr(k = 2|j) Pr(k = 3|j) Pr(k = 4|j)





j = 1 (WM) 0.26 0.29 0.29 0.16

j = 2 (Cauchy) 0.14 0.55 0.20 0.11

j = 3 (pow. exp.) 0.14 0.22 0.46 0.17

j = 4 (BR) 0.11 0.08 0.05 0.76

.

ABC results

Posterior model probabilities:
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Posterior predictive checks for pairwise extremal concurrence probabilities:
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