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• Consider the following data, 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦1000) :

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• The 𝐾𝐾-component mixture model is expressed as

𝒀𝒀 ~ 𝑝𝑝 𝒚𝒚 𝒘𝒘,𝝓𝝓,𝝀𝝀 = �
𝑖𝑖=1

𝑁𝑁

�
𝑘𝑘=1

𝐾𝐾

𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘 𝑦𝑦𝑖𝑖 𝝓𝝓𝑘𝑘 ,𝝀𝝀

where 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝑁𝑁) is the observed data, 𝝓𝝓𝑘𝑘 and 𝝀𝝀
denote unknown component-specific and common 
parameter(s) respectively, and 𝑓𝑓𝑘𝑘(�) is the 𝑘𝑘th component 
density with corresponding mixture weight 𝑤𝑤𝑘𝑘 subject to:

∑𝑘𝑘=1𝐾𝐾 𝑤𝑤𝑘𝑘 = 1 and 𝑤𝑤𝑘𝑘 ≥ 0 for 𝑘𝑘 = 1, … ,𝐾𝐾.

• Note: 𝜽𝜽 = 𝝓𝝓1,(1,…,𝐾𝐾), … ,𝝓𝝓𝑅𝑅−1,(1,…,𝐾𝐾),𝒘𝒘 .

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

Marin, J-M., K. Mengersen, and C. P. Robert.  2005.  “Bayesian modelling and inference on mixtures of 
distributions” In Handbook of Statistics edited C. Rao and D. Dey.  New York: Springer-Verlag.
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• A latent allocation variable 𝑍𝑍𝑖𝑖 is used to identify which 
component 𝑌𝑌𝑖𝑖 belongs to.

|𝑌𝑌𝑖𝑖 𝑧𝑧𝑖𝑖 ,𝝓𝝓,𝝀𝝀 ~ 𝑓𝑓𝑧𝑧𝑖𝑖 𝑦𝑦𝑖𝑖 𝝓𝝓𝑧𝑧𝑖𝑖 ,𝝀𝝀
𝑍𝑍𝑖𝑖|𝒘𝒘 ~ Cat 𝑤𝑤1, … ,𝑤𝑤𝐾𝐾

• What happens if we swap the labels?  E.g.

𝑧𝑧1 ≔ 𝑧𝑧2 ⇒ 𝑓𝑓1 ≔ 𝑓𝑓2
𝑧𝑧2 ≔ 𝑧𝑧1 ⇒ 𝑓𝑓2 ≔ 𝑓𝑓1

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• The likelihood is exchangeable meaning that it is invariant to 
permutations of the labels identifying the mixture 
components

𝑝𝑝 𝒚𝒚 𝜽𝜽,𝝀𝝀 = 𝑝𝑝 𝒚𝒚 𝜏𝜏 𝜽𝜽 ,𝝀𝝀

for any permutation 𝜏𝜏.

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

• If the posterior distribution is invariant to permutations of the 
labels, this is known as label switching (LS).
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• LS will occur if:
– the prior is (at least partly) exchangeable; and 
– the sampler is efficient at exploring the posterior hypersurface.

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

• Why is LS a problem?

• The posterior will have (up to) 𝐾𝐾! symmetric modes.

No label switching LS between all 3 groupsLS between groups 1 and 2
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• …Because the marginal posterior distributions are identical for 
each component.

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

LS between all 3 groupsLS between groups 1 and 2No label switching

So how can we make inferences???
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• One of the earliest solutions to LS:
– Use an Artificial identifiability constraint (AIC) on some parameters, e.g.

𝑓𝑓𝑘𝑘 𝑦𝑦𝑖𝑖 𝝓𝝓𝑘𝑘 = 𝒩𝒩(𝑦𝑦𝑖𝑖; 𝜇𝜇𝑘𝑘 ,𝜎𝜎𝑘𝑘2)
𝑝𝑝(𝜽𝜽)𝕀𝕀(𝜇𝜇1 < ⋯ < 𝜇𝜇𝐾𝐾)

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

• Not a good solution!
– Choosing a suitable AIC is not straightforward.

• Why not 𝜎𝜎12 < ⋯ < 𝜎𝜎𝐾𝐾2?.
• What about multivariate mixtures?
• What if components are poorly separated?

– Destroys the non-informativeness of the exchangeable prior.
• Why not use an informative (non-exchangeable) prior instead?

– Does not guarantee removal of symmetry in the posterior.
– Can have a large influence on the shape of the posterior.
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• More decision theoretic solutions have been proposed:

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

AIC

KL

PRA

BM

BMP

ECR

SJW

DB

PU

ZS

ZS 2

Artificial identifiability constraint

Kullack-Leibler divergence algorithm

Pivotal reordering algorithm

Bernoulli mixture algorithm

Bernoulli mixture permutation algorithm

Equivalence classes representatives algorithms
• Non-iterative (ECR) and iterative versions (ECR 1 and ECR 2)

(Named after authors: Sperrin, Jaki, Wit)

Data-based relabelling algorithm
• Non-iterative (DB) and iterative (DB it.)

Pivotal unit relabelling algorithm

Zswitch relabelling algorithm

Zswitch 2 relabelling algorithm

2000

2005

2009

2009

2010,
2014

2010

2014

2015

2015

2017
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• Aside from AIC, these approaches aim to reverse the effect of 
label switching by determining the correct permutations
𝜏𝜏(𝑚𝑚) for 𝑚𝑚 = 1, … ,𝑀𝑀 (number of MCMC iterations).

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

• For simple models, this could be done manually:
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• Not feasible for large 𝐾𝐾.

– Need to use relabelling algorithms!

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

• Algorithm efficiency is a concern.
– Searching all 𝐾𝐾! permutations for the correct one can be very slow.
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• Aside: how many permutations in a Rubik's cube?

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

https://www.youtube.com/watch?v=np2G0yr5xI0

– 8! × 37 × 12! /2 × 211 ≈ 4.325 × 1019 ≈ 21!
– And yet humans can solve it fast!

World record set 2nd September 2017

https://www.youtube.com/watch?v=np2G0yr5xI0
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• The KL, PRA, BMP, all ECR, both DB, ZS, and ZS 2 algorithms 
find 𝜏𝜏 by minimising the posterior expectation of some loss 
function, E ℒ 𝑎𝑎;𝜽𝜽, 𝒛𝒛 |𝒚𝒚 .

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

• Since the likelihood is invariant to permutations of the 
parameters, the loss function should also be permutation 
invariant, i.e.

ℒ 𝑎𝑎;𝜽𝜽, 𝒛𝒛 = ℒ 𝑎𝑎; 𝜏𝜏 𝜽𝜽 , 𝜏𝜏−1(𝒛𝒛) .

• If ℒ0 𝑎𝑎;𝜽𝜽, 𝒛𝒛 denotes a loss function which is not permutation 
invariant, we define

ℒ 𝑎𝑎;𝜽𝜽, 𝒛𝒛 = min
𝜏𝜏
ℒ0 𝑎𝑎; 𝜏𝜏 𝜽𝜽 , 𝜏𝜏−1 𝒛𝒛 .
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• If the loss function ℒ0 is of the form

ℒ0 𝑎𝑎;𝜽𝜽, 𝒛𝒛 = �
𝑘𝑘=1

𝐾𝐾

ℒ0 𝑎𝑎;𝜽𝜽𝑘𝑘 , 𝒛𝒛(𝑘𝑘)

then minimising ℒ0 is equivalent to minimising

�
𝑘𝑘=1

𝐾𝐾

𝑐𝑐𝜏𝜏 𝑘𝑘 ,𝑘𝑘

where 𝑐𝑐𝑗𝑗,𝑘𝑘 = ℒ0 𝑎𝑎;𝜽𝜽𝑗𝑗 , 𝒛𝒛(𝑗𝑗) is the cost of assigning the 𝑘𝑘th
element of 𝜏𝜏 the value 𝑗𝑗, i.e. 𝜏𝜏(𝑘𝑘) = 𝑗𝑗.

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• That is, the minimisation problem

min
𝜏𝜏(𝑚𝑚)∈𝑆𝑆

ℒ0 𝑎𝑎; 𝜏𝜏 𝑚𝑚 𝜽𝜽 𝑚𝑚 , 𝜏𝜏−1 𝑚𝑚 𝒛𝒛 𝑚𝑚

is equivalent to the linear sum assignment problem (LSAP):

min
𝜏𝜏(𝑚𝑚)∈𝑆𝑆

�
𝑘𝑘=1

𝐾𝐾

𝑐𝑐𝜏𝜏𝑘𝑘
(𝑚𝑚),𝑘𝑘 = min

𝑏𝑏
�
𝑗𝑗=1

𝐾𝐾

�
𝑘𝑘=1

𝐾𝐾

𝑏𝑏𝑗𝑗,𝑘𝑘𝑐𝑐𝑗𝑗,𝑘𝑘
(𝑚𝑚)

subject to

�
𝑗𝑗=1

𝐾𝐾

𝑏𝑏𝑗𝑗,𝑘𝑘 = �
𝑘𝑘=1

𝐾𝐾

𝑏𝑏𝑗𝑗,𝑘𝑘 = 1 and 𝑏𝑏𝑗𝑗,𝑘𝑘 ∈ 0,1 .

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• E.g. 4-component mixture: 

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

𝑆𝑆 =

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 3 2
1 4 2 3
2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1
3 1 2 4
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

Constraint matrix:

𝑏𝑏 =

𝑏𝑏11 𝑏𝑏12 𝑏𝑏13 𝑏𝑏14
𝑏𝑏21 𝑏𝑏22 𝑏𝑏23 𝑏𝑏24
𝑏𝑏31 𝑏𝑏32 𝑏𝑏33 𝑏𝑏34
𝑏𝑏41 𝑏𝑏42 𝑏𝑏43 𝑏𝑏44

Set of all permutations:

𝑏𝑏 =

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0
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• Kullback-Leibler (KL) divergence algorithm (Stephens 2000):

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

1) Initialise the 𝑀𝑀 × 𝐾𝐾 matrix of permutations 𝓣𝓣 = {𝜏𝜏(1), … , 𝜏𝜏(𝑀𝑀)}.  This 
is usually initialised so that 𝜏𝜏(𝑚𝑚) = {1, … ,𝐾𝐾} for all 𝑚𝑚.

2) For 𝑖𝑖 = 1, … ,𝑁𝑁 and 𝑘𝑘 = 1, … ,𝐾𝐾, calculate

�̂�𝑝𝑖𝑖,𝑘𝑘 =
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

𝑝𝑝𝑖𝑖,𝜏𝜏(𝑚𝑚)(𝑘𝑘)
(𝑚𝑚) where 𝑝𝑝𝑖𝑖𝑘𝑘 =

𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘(𝑦𝑦𝑖𝑖|𝜙𝜙𝑘𝑘 , 𝜆𝜆)
∑𝑗𝑗=1𝐾𝐾 𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(𝑦𝑦𝑖𝑖|𝜙𝜙𝑗𝑗 , 𝜆𝜆)

3) For 𝑚𝑚 = 1, … ,𝑀𝑀, determine 𝜏𝜏(𝑚𝑚) by solving the LSAP using costs

𝑐𝑐𝑗𝑗,𝑘𝑘
(𝑚𝑚) = �

𝑖𝑖=1

𝑁𝑁

𝑝𝑝𝑖𝑖,𝑗𝑗
(𝑚𝑚) log

𝑝𝑝𝑖𝑖,𝑗𝑗
(𝑚𝑚)

�̂�𝑝𝑖𝑖,𝑘𝑘
.

4) If an improvement in ∑𝑚𝑚=1
𝑀𝑀 ℒ̂0

(𝑚𝑚) has been achieved, return to step 2) 
and repeat, otherwise stop.

Stephens, M.  2000b.  Dealing with label Switching in mixture models.  Journal of the Royal Statistical Society 
Series B 62 (4): 795-809.  doi: 10.1111/1467-9868.00265
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• Pivotal Reordering Algorithm (PRA) (Marin et al. 2005):

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

1) Define the pivot 𝜽𝜽∗ = 𝜽𝜽(𝑚𝑚∗) where 𝑚𝑚∗ is the iteration which 
corresponds to the Monte Carlo approximation of the maximum a 
posteriori (MAP) estimate of 𝜽𝜽 = {𝝓𝝓𝑘𝑘 ,𝐰𝐰}.

2) For 𝑚𝑚 = 1, … ,𝑀𝑀, determine 𝜏𝜏(𝑚𝑚) by maximising the scalar product

𝜏𝜏(𝑚𝑚) = argmax
𝜏𝜏 ∈ 𝑆𝑆

�
𝑟𝑟=1

𝑅𝑅

�
𝑘𝑘=1

𝐾𝐾

𝜃𝜃𝑟𝑟,𝜏𝜏𝑘𝑘
(𝑚𝑚)𝜃𝜃𝑟𝑟,𝑘𝑘

∗

(This is equivalent to minimising the Euclidean distance between 
𝜏𝜏 𝜽𝜽(𝑚𝑚) and 𝜽𝜽∗.)

Note that this problem could be formulated as a LSAP using costs

𝑐𝑐𝑗𝑗,𝑘𝑘
(𝑚𝑚) = −�

𝑟𝑟=1

𝑅𝑅

𝜃𝜃𝑟𝑟,𝑗𝑗
(𝑚𝑚)𝜃𝜃𝑟𝑟,𝑘𝑘

∗ .

Marin, J-M., K. Mengersen, and C. P. Robert.  2005.  “Bayesian modelling and inference on mixtures of 
distributions” In Handbook of Statistics edited C. Rao and D. Dey.  New York: Springer-Verlag.
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• Zswitch (ZS) (van Havre et al. 2015):

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

1) Choose one iteration 𝑚𝑚∗ to be the reference, with corresponding 
allocation vector 𝒛𝒛∗ = (𝑧𝑧1, … , 𝑧𝑧𝑁𝑁)(𝑚𝑚∗) and parameter values 𝜽𝜽∗.

2) For 𝑚𝑚 = 1, … ,𝑀𝑀:

van Havre, Z., N. White, J. Rousseau, and K. Mengersen.  2015.  Overfitting Bayesian mixture models with an 
unknown number of components.  PLoS ONE 10 (7): e0131739.  doi: 10.1371/journal.pone.0131739.

Phase 1: Allocation-based relabelling
a) Construct a 𝐾𝐾 × 𝐾𝐾 matrix 𝐌𝐌 with elements

𝐌𝐌𝑗𝑗,𝑘𝑘 = �
𝑖𝑖=1

𝑁𝑁

𝕀𝕀 𝑧𝑧𝑖𝑖
(𝑚𝑚) = 𝑗𝑗 𝕀𝕀 𝑧𝑧𝑖𝑖∗ = 𝑘𝑘 , 𝑗𝑗, 𝑘𝑘 ≤ 𝐾𝐾.

b) For 𝑗𝑗 = 1, … ,𝐾𝐾, define the set 𝐼𝐼𝑗𝑗 as:

𝐼𝐼𝑗𝑗 = 𝑘𝑘:
𝐌𝐌𝑗𝑗,𝑘𝑘

∑𝑘𝑘′=1
𝐾𝐾 𝐌𝐌𝑗𝑗,𝑘𝑘′

> 𝜔𝜔 .
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• Zswitch (ZS) (van Havre et al. 2015) continued :

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

van Havre, Z., N. White, J. Rousseau, and K. Mengersen.  2015.  Overfitting Bayesian mixture models with an 
unknown number of components.  PLoS ONE 10 (7): e0131739.  doi: 10.1371/journal.pone.0131739.

c) Define �̂�𝑆 ⊆ 𝑆𝑆 as the set of permutations arising from the 𝐾𝐾-fold 
Cartesian product of each set 𝐼𝐼𝑗𝑗 :

�̂�𝑆 = 𝐼𝐼1 × ⋯× 𝐼𝐼𝐾𝐾 .

d) If �̂�𝑆 = 1, set 𝜏𝜏(𝑚𝑚) = �̂�𝑆 , otherwise set:
Phase 2: Parameter-based relabelling

𝜏𝜏(𝑚𝑚) = argmin
𝜏𝜏∈�̂�𝑆

�
𝑘𝑘=1

𝐾𝐾

�
𝑟𝑟=1

𝑅𝑅 𝜃𝜃𝑟𝑟,𝑘𝑘
∗ − 𝜃𝜃𝑟𝑟,𝜏𝜏 𝑘𝑘

(𝑚𝑚)

𝜃𝜃𝑟𝑟,𝑘𝑘
∗ .
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• Zswitch is very accurate and for 𝐾𝐾 < 5, very efficient.
• However, it requires a tuning parameter, 𝜔𝜔.

– Smaller 𝜔𝜔 increases accuracy (more reliance on phase 2) but also 
computation time.

– Larger 𝜔𝜔 decreases computation time, but it can result in set 𝐼𝐼𝑗𝑗 being 
empty.

• Additionally, the storage and computation of �̂�𝑆 can become 
prohibitive for large 𝐾𝐾, especially when the components 
overlap (�̂�𝑆 approaches 𝑆𝑆)
– E.g. for 𝐾𝐾 = 100, this easily exceeds 1000GB of RAM for 1 iteration!

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• Zswitch 2 improves Zswitch in two main ways.
– Convert phase 2 relabelling strategy into LSAP costs:

𝑐𝑐𝑗𝑗,𝑘𝑘
(𝑚𝑚) = �

𝑟𝑟=1

𝑅𝑅 𝜃𝜃𝑟𝑟,𝑘𝑘
∗ − 𝜃𝜃𝑟𝑟,𝑗𝑗

(𝑚𝑚)

𝜃𝜃𝑟𝑟,𝑘𝑘
∗ .

– Combine this with the ideas of the phase 1 relabelling strategy and 
tuning parameter by constructing the matrix 𝐌𝐌 exactly as before, and 
modifying the costs as

𝑐𝑐𝑗𝑗,𝑘𝑘
(𝑚𝑚) =

1
𝐌𝐌𝑗𝑗,𝑘𝑘

�
𝑟𝑟=1

𝑅𝑅 𝜃𝜃𝑟𝑟,𝑘𝑘
∗ − 𝜃𝜃𝑟𝑟,𝑗𝑗

(𝑚𝑚)

𝜃𝜃𝑟𝑟,𝑘𝑘
∗ if

𝐌𝐌𝑗𝑗,𝑘𝑘

∑𝑘𝑘′=1
𝐾𝐾 𝐌𝐌𝑗𝑗,𝑘𝑘′

> 𝜔𝜔

∞ otherwise

.

– This circumvents problems with 𝜔𝜔 and �̂�𝑆.

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• Simulation studies:
– Poisson, Gaussian, and Gamma mixtures.
– Test:

• Computational efficiency (up to 𝐾𝐾 = 100)
• Accuracy
• Robustness to misspecification of 𝐾𝐾

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• Efficiency results (Poisson mixture):

Mixtures Label Switching Solutions: A - Z Comparison Conclusions

≈ 200𝑠𝑠

≈ 1100𝑠𝑠
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• Efficiency results (Gaussian mixture):

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• Accuracy results (Poisson mixture):

where the mislabel severity index is

𝑀𝑀𝑆𝑆𝐼𝐼 = 1 −
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

𝐴𝐴 𝑚𝑚

and 𝐴𝐴 𝑚𝑚 is the proportion of correct permutation indices.

Mixtures Label Switching Solutions: A - Z Comparison Conclusions
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• Accuracy results (Gaussian mixture):

where the mislabel severity index is

𝑀𝑀𝑆𝑆𝐼𝐼 = 1 −
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

𝐴𝐴 𝑚𝑚

and 𝐴𝐴 𝑚𝑚 is the proportion of correct permutation indices.
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• Misspecification results (Gamma mixture):

where the mislabel severity index is

𝑀𝑀𝑆𝑆𝐼𝐼 = 1 −
1
𝑀𝑀
�
𝑚𝑚=1

𝑀𝑀

𝐴𝐴 𝑚𝑚

and 𝐴𝐴 𝑚𝑚 is the proportion of correct permutation indices.
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• The accuracy and computational efficiency of each algorithm 
can vary substantially.
– Higher computational cost ≠ higher accuracy
– Most algorithms perform OK for small 𝐾𝐾
– Algorithms that can be formulated as a LSAP are generally fast.

• Zswitch 2 can be viewed as an improvement on PRA and ZS.
– Improved accuracy and computational efficiency (for large 𝐾𝐾).

• Future research:
– Ensemble approach (e.g. PU + ZS 2)
– Expand review of algorithms (Pan et al. 2015, Yao 2013, …) 
– Expand simulation study (e.g. larger 𝐾𝐾)
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• Key references:
Marin, J-M., K. Mengersen, and C. P. Robert.  2005.  “Bayesian modelling and inference on 

mixtures of distributions” In Handbook of Statistics edited C. Rao and D. Dey.  New 
York: Springer-Verlag.

Stephens, M.  2000b.  Dealing with label Switching in mixture models.  Journal of the Royal 
Statistical Society Series B 62 (4): 795-809.  doi: 10.1111/1467-9868.00265

van Havre, Z., N. White, J. Rousseau, and K. Mengersen.  2015.  Overfitting Bayesian mixture 
models with an unknown number of components.  PLoS ONE 10 (7): e0131739.  doi: 
10.1371/journal.pone.0131739.

The work presented in this talk is in preparation for submission to the Journal of the Royal 
Statistical Society Series B.

This work also appears as a chapter in my PhD thesis:

Duncan, E. W. 2017.  Bayesian approaches to issues arising in spatial modelling. PhD by 
Publication, Queensland University of Technology.  URL: https://eprints.qut.edu.au/
view/person/Duncan,_Earl.html

https://eprints.qut.edu.au/view/person/Duncan,_Earl.html
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