A to Z: 20 years of progress on the label switching problem

Earl Duncan

Bayes on the Beach Conference
15 Nov 2017

- Consider the following data, $\boldsymbol{y}=\left(y_{1}, \ldots, y_{1000}\right)$:

- The K-component mixture model is expressed as

$$
\boldsymbol{Y} \sim p(\boldsymbol{y} \mid \boldsymbol{w}, \boldsymbol{\phi}, \boldsymbol{\lambda})=\prod_{i=1}^{N} \sum_{k=1}^{K} w_{k} f_{k}\left(y_{i} \mid \boldsymbol{\phi}_{k}, \lambda\right)
$$

where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)$ is the observed data, $\boldsymbol{\phi}_{k}$ and $\boldsymbol{\lambda}$ denote unknown component-specific and common parameter(s) respectively, and $f_{k}(\cdot)$ is the $k^{\text {th }}$ component density with corresponding mixture weight w_{k} subject to:

$$
\sum_{k=1}^{K} w_{k}=1 \text { and } w_{k} \geq 0 \text { for } k=1, \ldots, K
$$

- Note: $\boldsymbol{\theta}=\left\{\boldsymbol{\phi}_{1,(1, \ldots, K)}, \ldots, \boldsymbol{\phi}_{R-1,(1, \ldots, K)}, \boldsymbol{w}\right\}$.

Marin, J-M., K. Mengersen, and C. P. Robert. 2005. "Bayesian modelling and inference on mixtures of distributions" In Handbook of Statistics edited C. Rao and D. Dey. New York: Springer-Verlag.

- A latent allocation variable Z_{i} is used to identify which component Y_{i} belongs to.

$$
\begin{gathered}
Y_{i} \mid z_{i}, \boldsymbol{\phi}, \boldsymbol{\lambda} \sim f_{z_{i}}\left(y_{i} \mid \boldsymbol{\phi}_{z_{i}}, \boldsymbol{\lambda}\right) \\
Z_{i} \mid \boldsymbol{w} \sim \operatorname{Cat}\left(w_{1}, \ldots, w_{K}\right)
\end{gathered}
$$

- What happens if we swap the labels? E.g.

$$
\begin{array}{lll}
z_{1}:=z_{2} \quad & \Rightarrow f_{1}:=f_{2} \\
z_{2}:=z_{1} & \Rightarrow f_{2}:=f_{1}
\end{array}
$$

- The likelihood is exchangeable meaning that it is invariant to permutations of the labels identifying the mixture components

$$
p(\boldsymbol{y} \mid \boldsymbol{\theta}, \boldsymbol{\lambda})=p(\boldsymbol{y} \mid \tau(\boldsymbol{\theta}), \boldsymbol{\lambda})
$$

for any permutation τ.

- If the posterior distribution is invariant to permutations of the labels, this is known as label switching (LS).
- LS will occur if:
- the prior is (at least partly) exchangeable; and
- the sampler is efficient at exploring the posterior hypersurface.
- The posterior will have (up to) K ! symmetric modes.

LS between groups 1 and 2

LS between all $\mathbf{3}$ groups

- Why is LS a problem?
- ...Because the marginal posterior distributions are identical for each component. So how can we make inferences???

- One of the earliest solutions to LS:
- Use an Artificial identifiability constraint (AIC) on some parameters, e.g.

$$
\begin{gathered}
f_{k}\left(y_{i} \mid \boldsymbol{\phi}_{k}\right)=\mathcal{N}\left(y_{i} ; \mu_{k}, \sigma_{k}^{2}\right) \\
p(\boldsymbol{\theta}) \mathbb{I}\left(\mu_{1}<\cdots<\mu_{K}\right)
\end{gathered}
$$

- Not a good solution!
- Choosing a suitable AIC is not straightforward.
- Why not $\sigma_{1}^{2}<\cdots<\sigma_{K}^{2}$?.
- What about multivariate mixtures?
- What if components are poorly separated?
- Destroys the non-informativeness of the exchangeable prior.
- Why not use an informative (non-exchangeable) prior instead?
- Can have a large influence on the shape of the posterior.
- Does not guarantee removal of symmetry in the posterior.
- More decision theoretic solutions have been proposed:

- Aside from AIC, these approaches aim to reverse the effect of label switching by determining the correct permutations $\tau^{(m)}$ for $m=1, \ldots, M$ (number of MCMC iterations).
- For simple models, this could be done manually:

- Not feasible for large K.

- Need to use relabelling algorithms!
- Algorithm efficiency is a concern.
- Searching all K ! permutations for the correct one can be very slow.
- Aside: how many permutations in a Rubik's cube?
$-8!\times 3^{7} \times(12!/ 2) \times 2^{11} \approx 4.325 \times 10^{19} \approx 21!$
- And yet humans can solve it fast!

World record set $2^{\text {nd }}$ September 2017

- The KL, PRA, BMP, all ECR, both DB, ZS, and ZS 2 algorithms find τ by minimising the posterior expectation of some loss function, $\mathrm{E}[\mathcal{L}(a ; \boldsymbol{\theta}, \boldsymbol{z}) \mid \boldsymbol{y}]$.
- Since the likelihood is invariant to permutations of the parameters, the loss function should also be permutation invariant, i.e.

$$
\mathcal{L}(a ; \boldsymbol{\theta}, \mathbf{z})=\mathcal{L}\left(a ; \tau(\boldsymbol{\theta}), \tau^{-1}(\mathbf{z})\right) .
$$

- If $\mathcal{L}_{0}(a ; \boldsymbol{\theta}, \mathbf{z})$ denotes a loss function which is not permutation invariant, we define

$$
\mathcal{L}(a ; \boldsymbol{\theta}, \mathbf{z})=\min _{\tau} \mathcal{L}_{0}\left(a ; \tau(\boldsymbol{\theta}), \tau^{-1}(\mathbf{z})\right) .
$$

- If the loss function \mathcal{L}_{0} is of the form

$$
\mathcal{L}_{0}(a ; \boldsymbol{\theta}, \mathbf{z})=\sum_{k=1}^{K} \mathcal{L}_{0}\left(a ; \boldsymbol{\theta}_{k}, \mathbf{z}(k)\right)
$$

then minimising \mathcal{L}_{0} is equivalent to minimising

$$
\sum_{k=1}^{K} c_{\tau(k), k}
$$

where $c_{j, k}=\mathcal{L}_{0}\left(a ; \boldsymbol{\theta}_{j}, \mathbf{z}(j)\right)$ is the cost of assigning the $k^{\text {th }}$ element of τ the value j, i.e. $\tau(k)=j$.

- That is, the minimisation problem

$$
\min _{\tau^{(m)} \in S} \mathcal{L}_{0}\left(a ; \tau^{(m)}\left(\boldsymbol{\theta}^{(m)}\right),\left(\tau^{-1}\right)^{(m)}\left(\boldsymbol{Z}^{(m)}\right)\right)
$$

is equivalent to the linear sum assignment problem (LSAP):

$$
\min _{\tau^{(m)} \in S} \sum_{k=1}^{K} c_{\tau_{k}^{(m)}, k}=\min _{b} \sum_{j=1}^{K} \sum_{k=1}^{K} b_{j, k} c_{j, k}^{(m)}
$$

subject to

$$
\sum_{j=1}^{K} b_{j, k}=\sum_{k=1}^{K} b_{j, k}=1 \quad \text { and } \quad b_{j, k} \in\{0,1\}
$$

- E.g. 4-component mixture:
Set of all permutations: $\left\{\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 2 & 4 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 3 & 2 \\ 1 & 4 & 2 & 3 \\ 2 & 1 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 2 & 3 & 1 & 4 \\ 2 & 3 & 4 & 1 \\ 2 & 4 & 1 & 3 \\ 2 & 4 & 3 & 1 \\ 3 & 1 & 2 & 4 \\ 3 & 1 & 4 & 2 \\ 3 & 2 & 1 & 4 \\ 3 & 2 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 3 & 4 & 2 & 1 \\ 4 & 1 & 2 & 3 \\ 4 & 1 & 3 & 2 \\ 4 & 2 & 1 & 3 \\ 4 & 2 & 3 & 1 \\ 4 & 3 & 1 & 2 \\ 4 & 3 & 2 & 1\end{array}\right\} \quad$ Constraint matrix: $\left.\begin{array}{lllll} & \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
- Kullback-Leibler (KL) divergence algorithm (Stephens 2000):

1) Initialise the $M \times K$ matrix of permutations $\boldsymbol{\mathcal { T }}=\left\{\tau^{(1)}, \ldots, \tau^{(M)}\right\}$. This is usually initialised so that $\tau^{(m)}=\{1, \ldots, K\}$ for all m.
2) For $i=1, \ldots, N$ and $k=1, \ldots, K$, calculate

$$
\hat{p}_{i, k}=\frac{1}{M} \sum_{m=1}^{M} p_{i, \tau^{(m)}(k)}^{(m)} \quad \text { where } \quad p_{i k}=\frac{w_{k} f_{k}\left(y_{i} \mid \phi_{k}, \lambda\right)}{\sum_{j=1}^{K} w_{j} f_{j}\left(y_{i} \mid \phi_{j}, \lambda\right)}
$$

3) For $m=1, \ldots, M$, determine $\tau^{(m)}$ by solving the LSAP using costs

$$
c_{j, k}^{(m)}=\sum_{i=1}^{N} p_{i, j}^{(m)} \log \left(\frac{p_{i, j}^{(m)}}{\hat{p}_{i, k}}\right) .
$$

4) If an improvement in $\sum_{m=1}^{M} \hat{\mathcal{L}}_{0}^{(m)}$ has been achieved, return to step 2) and repeat, otherwise stop.

Stephens, M. 2000b. Dealing with label Switching in mixture models. Journal of the Royal Statistical Society
Series B 62 (4): 795-809. doi: 10.1111/1467-9868.00265

- Pivotal Reordering Algorithm (PRA) (Marin et al. 2005):

1) Define the pivot $\boldsymbol{\theta}^{*}=\boldsymbol{\theta}^{\left(m^{*}\right)}$ where m^{*} is the iteration which corresponds to the Monte Carlo approximation of the maximum a posteriori (MAP) estimate of $\boldsymbol{\theta}=\left\{\boldsymbol{\phi}_{k}, \mathbf{w}\right\}$.
2) For $m=1, \ldots, M$, determine $\tau^{(m)}$ by maximising the scalar product

$$
\tau^{(m)}=\underset{\tau \in S}{\operatorname{argmax}} \sum_{r=1}^{R} \sum_{k=1}^{K} \theta_{r, \tau_{k}}^{(m)} \theta_{r, k}^{*}
$$

(This is equivalent to minimising the Euclidean distance between $\tau\left(\boldsymbol{\theta}^{(m)}\right)$ and $\boldsymbol{\theta}^{*}$.)

Note that this problem could be formulated as a LSAP using costs

$$
c_{j, k}^{(m)}=-\sum_{r=1}^{R} \theta_{r, j}^{(m)} \theta_{r, k}^{*}
$$

- Zswitch (ZS) (van Havre et al. 2015):

1) Choose one iteration m^{*} to be the reference, with corresponding allocation vector $\mathbf{z}^{*}=\left(z_{1}, \ldots, z_{N}\right)^{\left(m^{*}\right)}$ and parameter values $\boldsymbol{\theta}^{*}$.
2) For $m=1, \ldots, M$:

Phase 1: Allocation-based relabelling
a) Construct a $K \times K$ matrix \mathbf{M} with elements

$$
\mathbf{M}_{j, k}=\sum_{i=1}^{N} \mathbb{I}\left(z_{i}^{(m)}=j\right) \mathbb{I}\left(z_{i}^{*}=k\right)
$$

> M.jk			
z.ref			
z. now	1	2	3
1	0	0	200
2	90	10	0
3	0	200	0

$j, k \leq K$.
> Set.I
[[1]]
b) For $j=1, \ldots, K$, define the set I_{j} as:

$$
\begin{equation*}
I_{j}=\left\{k: \frac{\mathbf{M}_{j, k}}{\sum_{k^{\prime}=1}^{K} \mathbf{M}_{j, k^{\prime}}}>\omega\right\} \tag{23}
\end{equation*}
$$

[[2]]
van Havre, Z., N. White, J. Rousseau, and K. Mengersen. 2015. Overfitting Bayesian mixture models with an unknown number of components. PLoS ONE 10 (7): e0131739. doi: 10.1371/journal.pone. 0131739.

- Zswitch (ZS) (van Havre et al. 2015) continued :
c) Define $\hat{S} \subseteq S$ as the set of permutations arising from the K-fold Cartesian product of each set $\left\{I_{j}\right\}$:

$$
\hat{S}=I_{1} \times \cdots \times I_{K} .
$$

d) If $|\hat{S}|=1$, set $\tau^{(m)}=\hat{S}$, otherwise set:

$>$	S.hat	
2	2	1
2	3	1

Phase 2: Parameter-based relabelling

$$
\tau^{(m)}=\underset{\tau \in \hat{S}}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{r=1}^{R}\left|\frac{\theta_{r, k}^{*}-\theta_{r, \tau(k)}^{(m)}}{\theta_{r, k}^{*}}\right| .
$$

van Havre, Z., N. White, J. Rousseau, and K. Mengersen. 2015. Overfitting Bayesian mixture models with an unknown number of components. PLoS ONE 10 (7): e0131739. doi: 10.1371/journal.pone. 0131739.

- Zswitch is very accurate and for $K<5$, very efficient.
- However, it requires a tuning parameter, ω.
- Smaller ω increases accuracy (more reliance on phase 2) but also computation time.
- Larger ω decreases computation time, but it can result in set I_{j} being empty.
- Additionally, the storage and computation of \hat{S} can become prohibitive for large K, especially when the components overlap (\hat{S} approaches S)
- E.g. for $K=100$, this easily exceeds 1000 GB of RAM for 1 iteration!
- Zswitch 2 improves Zswitch in two main ways.
- Convert phase 2 relabelling strategy into LSAP costs:

$$
c_{j, k}^{(m)}=\sum_{r=1}^{R}\left|\frac{\theta_{r, k}^{*}-\theta_{r, j}^{(m)}}{\theta_{r, k}^{*}}\right|
$$

- Combine this with the ideas of the phase 1 relabelling strategy and tuning parameter by constructing the matrix \mathbf{M} exactly as before, and modifying the costs as

$$
c_{j, k}^{(m)}=\left\{\begin{array}{lc}
\frac{1}{\mathbf{M}_{j, k}} \sum_{r=1}^{R}\left|\frac{\theta_{r, k}^{*}-\theta_{r, j}^{(m)}}{\theta_{r, k}^{*}}\right| \quad \text { if } \frac{\mathbf{M}_{j, k}}{\sum_{k^{\prime}=1}^{K} \mathbf{M}_{j, k^{\prime}}}>\omega \\
\infty & \text { otherwise }
\end{array}\right.
$$

- This circumvents problems with ω and \hat{S}.
- Simulation studies:
- Poisson, Gaussian, and Gamma mixtures.
- Test:
- Computational efficiency (up to $K=100$)
- Accuracy
- Robustness to misspecification of K
- Efficiency results (Poisson mixture):

- Efficiency results (Gaussian mixture):

- Accuracy results (Poisson mixture):

where the mislabel severity index is

$$
M S I=1-\frac{1}{M} \sum_{m=1}^{M} A^{(m)}
$$

and $A^{(m)}$ is the proportion of correct permutation indices.

- Accuracy results (Gaussian mixture):

where the mislabel severity index is

$$
M S I=1-\frac{1}{M} \sum_{m=1}^{M} A^{(m)}
$$

and $A^{(m)}$ is the proportion of correct permutation indices.

- Misspecification results (Gamma mixture):

where the mislabel severity index is

$$
M S I=1-\frac{1}{M} \sum_{m=1}^{M} A^{(m)}
$$

and $A^{(m)}$ is the proportion of correct permutation indices.

- The accuracy and computational efficiency of each algorithm can vary substantially.
- Higher computational cost \neq higher accuracy
- Most algorithms perform OK for small K
- Algorithms that can be formulated as a LSAP are generally fast.
- Zswitch 2 can be viewed as an improvement on PRA and ZS.
- Improved accuracy and computational efficiency (for large K).
- Future research:
- Ensemble approach (e.g. PU + ZS 2)
- Expand review of algorithms (Pan et al. 2015, Yao 2013, ...)
- Expand simulation study (e.g. larger K)

- Key references:

Marin, J-M., K. Mengersen, and C. P. Robert. 2005. "Bayesian modelling and inference on mixtures of distributions" In Handbook of Statistics edited C. Rao and D. Dey. New York: Springer-Verlag.

Stephens, M. 2000b. Dealing with label Switching in mixture models. Journal of the Royal Statistical Society Series B 62 (4): 795-809. doi: 10.1111/1467-9868.00265
van Havre, Z., N. White, J. Rousseau, and K. Mengersen. 2015. Overfitting Bayesian mixture models with an unknown number of components. PLoS ONE 10 (7): e0131739. doi: 10.1371/journal.pone. 0131739.

The work presented in this talk is in preparation for submission to the Journal of the Royal Statistical Society Series B.

This work also appears as a chapter in my PhD thesis:
Duncan, E. W. 2017. Bayesian approaches to issues arising in spatial modelling. PhD by Publication, Queensland University of Technology. URL: https://eprints.qut.edu.au/ view/person/Duncan, Earl.html

