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Figure 1: Coloured rectangles show the dependencies among the hierarchical layers of the model. The response is the cortical
thickness of brain region 𝑘, within participant 𝑖 who has 𝑟 replicates denoted by 𝑦𝑖𝑟𝑘 . Participant specific variables is 𝒙𝑖, fixed
effect vector and residual errors are denoted by 𝜷 and 𝜎2. The spatial random effects for individual 𝑖 is 𝒃𝑖 which follows a
multivariate normal distribution with a spatially structured covariance matrix which is the product of the spatial scale parameter
𝜎𝑠
2 and covariance matrix for baseline age 𝛼, 𝑄𝛼. This matrix is a function of the covariance connectivity network 𝑊𝛼 and fixed

value 𝜌 ∈ (0, 1). The value of 𝜌 denotes the strength of spatial dependence in the random effects[1], and in this work it’s fixed to
𝜌 = 0.9. Matrix parameters 𝛾0 and 𝛾1 in the logistic regression layer of the model determine the probability (𝑝𝑘𝑗

𝛼 ) of a covariance

link being present between regions 𝑘 and 𝑗 at baseline age 𝛼.
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Spatio-temporal cortical brain patterns of 
Alzheimer’s disease

Degeneration of the human cortex is a complex, dynamic process which often spans decades. This degeneration can be evaluated on regions of interest (ROI)

in the brain through probabilistic network analyses. However, current approaches for finding such networks have two major limitations; 1) Analyses at discrete age

groups cannot appropriately account for connectivity dynamics over time, and 2) morphological tissue changes are seldom unified with connectivity networks, despite known
dependencies. In this work we propose a dynamic wombling model to estimate ROI covariance networks dependent on age and compare these results with discrete age wombling.
We applied our methods on the healthy controls (HC) and Alzheimer’s disease (AD) groups from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) case study.
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Figure 3: Marginal posterior probabilities of covariance dynamics over age for HC (A) and AD (B). Key ROI connections of interest are
in red frames which include the links between the supramarginal and parietal operculum gyrus (ROIs 1 and 5), as well as the link
between the middle temporal and posterior cingulate gyrus (ROIs 7 and 9). Blue frames denote ROI links which varied at
approximately age 75 and were detected by discrete age analyses (Figure 2). Refer to Figure 2 caption for ROI names. Posterior
means estimates of participants’ ranked for the middle temporal (ROI 7, top C) and posterior cingulate gyrus (ROI 9, bottom C),
which are two key ROI associated with AD. Overall average ROI population estimates for HC (blue) and AD (red) groups.

The statistical methodology presented in this work extends our understanding of
human brain functions as well as changes due to various brain disorders over age. The
analyses presented in this work will help practitioners choose suitable statistical
methods to identify key points in time when brain covariance connections change, in
addition to morphological tissue estimates, which could potentially allow for targeted
therapeutic interventions.

To benchmark our method with current brain network analyses which considers covariance 
networks at discrete age groups, we applied a simpler wombling model[1] on the ADNI cast 
study data on HC and AD groups. ROI connections with the largest change between young 
and old groups include the inferior temporal and parietal operculum for the HC group (top of 
Fig. 2) and the frontal gyrus and the parietal operculum for the AD (bottom of Fig. 2).

Figure 2: Covariance connectivity matrices results from the wombling algorithm for HC (top) and AD (bottom) diagnosis groups.
Posterior means for data partitioned into young (age < 75, A and D) and old (age > 75, B and E) age ranges for HC and AD groups.
Differences between young and old posterior means for HC (C) and AD (F) groups. The 10 ROI’s considered in this work are the; (1)
Supramarginal, (2) Entohirnal area, (3) Superior frontal gyrus, (4) Angular gyrus, (5) Parietal Operculum, (6) Superior temporal
gyrus, (7) Middle temporal gyrus, (8) Inferior temporal gyrus, (9) Posterior cingulate gyrus and (10) the Insula.

Our probabilistic network approach unifies biomarker estimates through the fixed and
random effects layers of the hierarchical model, contingent on the age dependent
covariance network estimation via wombling. Wombling is the estimation of a symmetric
binary matrix 𝑊, whose elements 𝑤𝑗𝑘 = 1 denote ROI 𝑗 and 𝑘 covary with each other,

and 0 otherwise. In this work we extend the traditional wombling model[1] to make 𝑊 be
a function of participants baseline 𝐴𝑔𝑒𝛼. Let 𝕀 be a 𝐾 × 𝐾 identity matrix, the dynamic
wombling model is of the form

The marginal posterior probabilities over age (𝑝𝑗𝑘
𝛼 ) and 80% credible intervals for

selected connections are shown in Fig. 3 for HC (A) and AD (B) groups. Unlike the
discrete analyses, which only provides information on the presence or absence of links,
dynamic wombling estimates the age and length of time taken for connections to alter
(if at all) while taking into account network uncertainty.

There is a posterior probability greater than 0.75 in the HC group of a link being
present between the middle temporal gyrus and posterior cingulate over ages 60 to
90. In contrast with the AD group, which shows a decreasing probability as age
increases. By age 75 and onwards, the probability of a connection between the same
regions drops to less than 0.12.

For the first time in brain network research, network heterogeneity over age is
estimated via a single model. The insight from this analyses shows the complex
probabilistic patterns of brain covariance over age, and how they differ for healthy
ageing and Alzheimer’s disease progression.A
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