
Modular shiny apps for reproducible data 
communication

Bulukani Mlalazi1, Anthony Ebert1,2, Paul Wu1,2, Kerrie Mengersen1,2
1 School of Mathematical Sciences, Queensland University of Technology (QUT), Australia

2 ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Australia

References
1. Cheng, J., 2017. Shiny - Modularizing Shiny app code [WWW Document]. URL https://shiny.rstudio.com/articles/modules.html (accessed 

10.25.17).
2. Grolemund, G., 2015. Shiny - How to understand reactivity in R [WWW Document]. URL https://shiny.rstudio.com/articles/understanding-

reactivity.html (accessed 11.6.17).
3. R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
4. Wu, P.P.Y., Pitchforth, J., Mengersen, K., 2014. A Hybrid Queue-based Bayesian Network framework for passenger facilitation modelling. 

Transp. Res. Part C Emerg. Technol. 46, 247–260. doi:10.1016/j.trc.2014.05.005

This work was funded through the Australian Research Council (ARC) linkage grant "Improving the Productivity and 
Efficiency of Australian Airports" (LP140100282).

Acknowledgements

Introduction
Aim: Promote modular software design as a foundation for interactive data-driven apps

Case Study: inbound airport passenger management in the form of an interactive shiny web app.

Background: • Interactive visualisation via apps is an effective way to gain insights from complex
data exploration and analyses and model interpretation. • However, app complexity typically
increases with the number and nature of included features. • The shiny R package is a powerful
tool for interactive data science communication. It connects the underlying analytical platform to
the end users via a responsive web interface and features a built-in modularisation framework to
mitigate app development complexity. This helps to manage app behaviour in the reactive code
execution framework (Grolemund, 2015) that underpins shiny.

Results: shiny is an excellent deployment tool to present data-driven solutions implemented in R to
broad audiences as it facilitates rapid prototyping and development, and modular app architecture
without the need to re-implement core analytics components.

Methodology
• Build an airport simulation model to predict changes in queuing behaviour in a network of
queues that represent the inbound passenger facilitation process in an international terminal.

• Implement this in R (R Core Team, 2017) based on the schema in Wu et al. (2014) (Figure 1).

• Select metrics from model outputs and design a simple graphical visualisation as the basis of our
data visualisation framework. Key features: interpretability & consistency.

• Construct a dashboard app in R using shiny and shinydashboard. Leverage the modularisation 
framework in shiny (Cheng, 2017) to manage app complexity. Create a user input module to enable 
users to modify key input parameters and submit custom simulation forecast requests and 
understand the potential impact of operational changes.

Results
App development: • Modular design that enabled rapid development of an interactive
visualisation app based on a complex data modelling engine; • Robust, reusable and updatable app
components; • Individual components that could be seamlessly integrated into a single, navigable
design to systematically communicate results to end users.

Data visualisation framework: • The app communicates a system state via two metrics, occupancy
(passenger counts) and dwell time (area clearance time). • The single, reusable visualisation
module enhances communication and interpretation by preserving important aesthetics app-wide.
• Consequently, this produces an app that provides more effective decision support.

Case study context: The situation described in Figure 2 provides a concrete demonstration of the
effectiveness of our app design approach and its potential impact on operational decision making.

The scenario depicts the case of a manager in the ECP who needs to make decisions about delayed
flights due to adverse weather at 8:30 am. Using the forecast section, the manager is able to
visualise the potential operational impact. Comparing the manager’s forecast (Figure 2c) to the
baseline scenario (Figure 2a), delayed arrivals are projected to create substantial congestion
between 10:00 am and 12:00 pm. The significant increase in passengers during a relatively slow
period is projected to substantially increase passenger wait times. However, the manager is able to
quantify the potential disruption and is empowered by this insight to more efficiently allocate the
resources at their disposal to pre-empt the adverse outcome.

Discussion
Benefits of app development through modularisation techniques:
• Improved overall app quality though focused development of robust app subunits that are

integrated into a cohesive product. Compartmentalised app logic is easier to develop and
debug, which enhances code reliability and focuses development efforts.

• Reduction in overall app development time with faster feature development cycles as modular
components are readily reconfigurable for reuse. Further, therefore new features can be
developed in isolation with minimal disruption of the existing codebase.

• Improved data communication outcomes as careful design of modular visualisation
components results in the seamless establishment of consistent visual semantics throughout
the app, improving data comparability.

• Methodology is scalable and generalizable.

Figure 2: Airport app user interface snapshots illustrating visualisation model Implementation. Data outputs pertaining to the
ECP section of the airport simulation model (Figure 1) demonstrate the versatility and consistency of the app’s core visualisation
module. Metrics of interest are area dwell time (minutes) and occupancy (passenger counts) and the app communicates system-
generated forecasts presented as a) an overview summary of the entire section and b) finer detail for each individual queue route.
Specific information is accessible via a linked data selector menu. c) A dedicated forecast submission section enables users to
submit and view the results of custom forecast scenarios as overview summaries comparable to those generated by the system a)
to facilitate decision making by scenario evaluation. The depicted user scenario evaluates deviation from the system forecast
where 6 flights (1250 passengers approx) scheduled to arrive between 08:30 and 09:30 were each delayed by exactly 60 min. Each
time series trace uses common visual elements to facilitate rapid comparability. A central dotted line denotes the expected metric
value surrounded by a coloured area representing the prediction interval, set as 99% for development to provide the most
representative simulation ensemble. Colour provides distinction between forecasts generated by the system (blue) and user
(purple). In addition, the grey area indicates time elapsed and represents 08:30 in all snapshots. The black line indicates the values
of live estimates where available with simulated data in use for development purposes.

a)

b)

c)

Figure 1: Schema of airport system used to construct simulation model. Simulated passengers enter the system on inbound flights
at preassigned arrival gates represented as individual queues modelling passenger disembarkation into the Arrivals Concourse
(AC). Transit through the AC to the immigration Entry Control Point (ECP) is defined by a combination of gate queue departure time
and simulated mobility demographics randomly assigned to each passenger. Nationality and other routing demographics for
automated self-service SmartGate systems or manual processing booths (M) for Australian (Aus) and foreign passport holders, are
also computed to assign virtual passengers to one of the four immigration queues. Passengers are randomly assigned zero or more
baggage items with associated arrival and screening demographics. The baggage collection process is captured in the Baggage Hall
(BH), before passenger screening in the Secondary Examination Area (SEA) whose three queues represent levels of scrutiny and
associated delay. For simplicity, SEA processing represents an arbitrary combination of examination by customs or quarantine
personnel, after which passengers immediately exit the system.

Ex
it

SmartGate
SmartGate

M: Aus

M: Foreign

Green
(fastest)

Orange
(moderate)

Red
(slowest)

Gate 1

Gate 2

Gate n

AC ECP BH SEA

Key: System queue Passenger flowSystem section


	Slide Number 1

