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Outline

• Brief background on Sequential Monte Carlo (SMC) and motivation
for this research.

• Time-efficient variational Bayesian (VB) approach for finding
posterior estimates of hidden Markov models.

• A novel hybrid scheme: Transdimensional SMC with VB proposals -
SMCVB - for hidden Markov modelling.

• Example of results and application to regime shift modelling.

Dr Clare McGrory University of Queensland (Centre for Applications in Natural Resource Mathematics University of Queensland BrisbaneOctober 5, 2017 2 / 29



Sequential Monte Carlo (SMC)

• Sequential Monte Carlo (SMC) techniques provide a means of
sampling from the posterior distribution of interest in Bayesian
inference.

• In SMC, a weighted sample of ‘particles’ is generated from a sequence
of probability distributions which ‘converge’ to the target distribution
of interest, in this case a Bayesian posterior distribution.

• SMC methods are based on the idea of sampling from the resulting
related sequence of target posterior distributions.

Dr Clare McGrory University of Queensland (Centre for Applications in Natural Resource Mathematics University of Queensland BrisbaneOctober 5, 2017 3 / 29



Sequential Monte Carlo (SMC)

• Early research in this area focused on the use of the sequential
approach to analyse data that truly arose sequentially over time (see
Doucet et al. (2001) for an overview).

• This was done by proposing an initial population of samples from the
initial target posterior - these are referred to as ‘particles’.

• These currrent particles are then reweighted via importance sampling
and resampled to approximate the next target posterior density in the
sequence.

Doucet, A., De Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo Methods in

Practice. Springer, NewYork (2001)
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Sequential Monte Carlo

• SMC has also been applied to static problems where the observed
data are treated as a sequence by reading the dataset in batches.
This concept has also been explored extensively with various schemes
having been proposed.

• In particular, Chopin (2002) proposed the data-tempering SMC
algorithm.

Chopin, N.: A sequential particle filter method for static models. Biometrika 89,

539–551 (2002)

• While SMC schemes are faster than many MCMC-based approaches,
there is still scope for exploring ways to more efficiently target the
posterior with better proposals for generating particles.
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Sequential Monte Carlo (SMC): Motivation for this work

• VB is a very fast alternative to MCMC which has been shown to
often provide a very good approximation to the true posterior.

• A hybrid SMCVB scheme based on this was outlined in the context of
finite mixture modelling in

McGrory C.A. et al.: Transdimensional Sequential Monte Carlo using Variational

Bayes SMCVB. Under revision. (2014).

• By using VB to generate the proposal distributions for new particles,
we aim to make the SMC scheme more efficient.
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Sequential Monte Carlo (SMC): Motivation for this work

• Most existing static SMC approaches are restricted to
fixed-dimensional space which can be restrictive for practical
application since estimating a suitable dimension for the model is
usually an important part of the analysis.

• A transdimensional SMC algorithm was provided in Del Moral et al.
(2006) for the changepoint problem with the number of changepoints
being unknown.

• A birth move was used to generate a new changepoint and the
algorithm made use of reversible jump Markov chain Monte Carlo
(RJMCMC) kernels to maintain particle diversity.

• Disadvantage of using RJMCMC is that it is very computationally
intensive.
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VB for Fitting a Hidden Markov Model with Gaussian
Noise

• Assume a Gaussian hidden Markov model (HMM) where the system
can be in any one of K states at any time-point i , but the actual
state sequence is hidden.

• Observations correspond to a noisy realisation of the actual state
sequence. We assume a discrete first-order Markovian dependence
structure, therefore the current state depends only on the state
occupied at the last time-point.

McGrory, C.A. and Titterington, D.M. (2009). Bayesian analysis of hidden Markov

models using variational approximations. Australian and New Zealand Journal of

Statistics, vol. 51(2), pp 227–244.
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VB for Fitting a Hidden Markov Model with Gaussian
Noise

• Given that the system is in state j1 at time-point i , the transition
matrix π represents the probability of moving to state j2 at time-point
i + 1.

• Transition matrix is defined as π = {πj1j2} where
πj1j2 = p(zi+1 = j2|zi = j1) and zi is the latent variable representing
the state at time i ;

• Observed data is denoted by {yi ; i = 1, . . . , n}, and the emission
probabilities, i.e., the conditional probabilities of state membership at
each time-point, are denoted by p(yi |zi = j) = pj(yi |φj).
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VB for Fitting a Hidden Markov Model with Gaussian
Noise

p(y , z , θ) =

n
∏

i=1

K
∏

j=1

(pj(yi |φj ))
zij ×

n−1
∏

i=1

K
∏

j1=1

K
∏

j2=1

(πj1j2)
zij1zi+1j2

×

K
∏

j=1

pj(φj )

K
∏

j1=1

p(πj1),

where zij is a latent indicator variable such that zij = 1, if zi = j , and
zij = 0, if zi 6= j .

Standard conjugate priors are used.
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Hidden Markov Modelling Using Variational Bayes (VB):
Approach Outline

• VB approach is non-simulation based and as a result it provides a
highly time-efficient way of performing inference.

• Particularly useful for analysing large datasets.

• The VB approach provides an approximation to the posterior
distribution of interest; this is referred to as the variational posterior.

McGrory, C. A., Titterington, D. M.:Variational approximations in Bayesian model

selection for finite mixture distributions. Compututational Statistics and Data Analysis,

51, 5352–5367 (2007)
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Hidden Markov Modelling Using Variational Bayes (VB):
Approach Outline

The variational approximation for the posterior distribution p(θ|y) is found
as the appropriate marginal distribution of the approximation to the joint
conditional density p(θ, z |y); it is this joint conditional density which is
approximated in the VB approach.

• In order to approximate p(θ, z |y) introduce a more easily computed
distribution: q(θ, z).

• The variational distribution is chosen to minimise the Kullback-Leibler
divergence between q(θ, z) and p(θ, z |y)

• Equivalently, this amounts to choosing q(θ, z) to maximise the lower
bound for p(y).
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Hidden Markov Modelling Using Variational Bayes (VB):
Approach Outline

• In order to make this maximisation tractable, the standard VB
approach is to assume that the variational distribution takes the
factorised form

q(θ, z) = qθ(θ)qz(z)

• The lower bound can then be maximised to obtain the algebraic forms
of the variational update expressions for each of the model parameters
and for the hidden indicator variables.

• These update equations can then be solved iteratively to obtain the
estimated variational posterior.
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Hidden Markov Modelling Using Variational Bayes (VB):
Variational Posteriors

qj1(πj1) = Dir(πj1 |{αj1j2}),

q(µj |τj) = N(µj |mj , (βjτj)
−1),

q(τj) = Ga

(

τj |
1

2
ηj ,

1

2
δj

)

.

• The forward-backward algorithm is used to find the a∗j1j2 which are the
estimates of the probabilities of transition from states j1 to state j2,
and the b∗ij ’s are estimates of the emission probabilities given that the
system is in state j at time point i .

• These are then used in the update equation for
qij = qz(zi = j) = p(zi = j1|y1, . . . , yn) and qz(zi = j1, zi+1 = j2).
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Hidden Markov Modelling Using Variational Bayes (VB):
Approach Outline

• We can iteratively solve these update expressions to find the
variational posterior estimates.

• In the standard approach for VB fitting of hidden Markov models, the
algorithm is initialised with a sufficiently large number of components
and, as the algorithm converges, redundant components are
eliminated through the approximation.

• This means that the VB approach estimates a suitable number of
components for the model, and this estimated K will be less than or
equal to the initial number proposed.

• This property is an intrinsic feature of the VB approach.
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A novel hybrid scheme: Transdimensional SMC with VB
proposals - SMCVB

• Within the context of hidden Markov modelling, we propose a new
transdimensional SMC algorithm based on the idea of using the
variational Bayes (VB) approach to generate proposal distributions.

• In other words, the algorithm uses particles drawn from a VB
approximation to the posterior rather than from the prior.

• Priors can be quite diverse leading to inefficiency in the SMC.
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A novel hybrid scheme: Transdimensional SMC with VB
proposals - SMCVB

• The complete-data target posterior is

π(θ) = π(θ|y1, · · · , yn)

• The target posterior at iteration t (t = 1, · · · ,T ) is

πt(θ) = πt(θ|y1, · · · , ynt ),

where n1 ≤ n2 ≤ · · · ≤ nT = n is an increasing set of sample sizes.

• By separating the data into batches in this way we form a sequence of
target posteriors which on average smoothly converge to the
complete data target posterior.
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Transdimensional SMC with VB proposals - SMCVB:
Algorithm Outline

0. Initialise:
• We generate a set of R particles(θ

(0)
r ,W

(0)
r )r=1,··· ,R with associated

weights {W
(0)
r } to target the initial posterior πt0(θ).

• We do this by estimating the VB partial posterior πVB(θ|y1, · · · , yn0)
to obtain the posterior estimates

• We can then draw R particles from these estimated posteriors, which

results in vectors of the form {θ
(0)
R = (µ

(0)
r , τ

(0)
r , ρ

(0)
r )}

• The weights are then obtained as

W
(0)
r ∝

p(y1, · · · , yn0 |θ
(0)
r )p(θ

(0)
r )

πVB(θ
(0)
r |y1, · · · , yn0)

We then normalise the weights to obtain W
(0)
r .
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Transdimensional SMC with VB proposals - SMCVB:
Algorithm Outline

1. Reweight:

• We update the weights at iteration t using the ntth batch of data
giving

W
(t)
r ∝ W

(t−1)
r × p(ynt−1+1, · · · , ynt |θ

(t−1)
r ),

where r = 1, · · · ,R .
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Transdimensional SMC with VB proposals - SMCVB:
Algorithm Outline

2. Resample if the ESS is not large enough:

• We resample R values from the current set of particles using a
suitable selection scheme such as multinomial, residual or stratified
sampling. We use multinomial sampling.

• We resample the {(θ
(t−1)
r ,W

(t−1)
r )}r=1,··· ,R to get

{(θ
′(t)
r , 1/R)r=1,··· ,R}.

This means that the set of resampled particles may contain more than one

copy of some of the particles from the previous set {θ
(t−1)
r }.
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Transdimensional SMC with VB proposals - SMCVB:
Algorithm Outline

3. Move:

• We move to a new set of particles, that will become the {θ
(t)
r } to be

carried forward, using a Metropolis–Hastings (MH) update, where the
proposal distribution is obtained from the VB posterior mean of the
parameters based on data y1, · · · , ynt .

• For each r we propose a parameter θ
∗(t)
r from πVB(θ|y1, · · · , ynt ) and

accept or reject, in favour of θ
′(t)
r , according to the ratio

MHr =
p(y1, · · · , ynt |θ

∗(t)
r )

p(y1, · · · , ynt |θ
′(t)
r )

×
πVB(θ

′(t)
r |y1, · · · , ynt )

πVB(θ
∗(t)
r |y1, · · · , ynt )

×
p(θ

∗(t)
r )

p(θ
′(t)
r )

×
p(∗− >′)

p(′− > ∗)
.
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Transdimensional SMC with VB proposals - SMCVB:
Algorithm Outline

4. Iterate: repeat steps 1-3 until nt = n.

• In this way we eventually reach the target which is the posterior for
the full dataset.

• The step that makes our approach novel in comparison to other SMC
algorithms is step 3 where we use a VB posterior mean estimate of
the model parameters in order to generate proposal particles.
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Examples of Some Results Obtained for a Simulated
Dataset of 1000 Data Points

Parameters of the Gaussian noise distributions
State Mean Standard Deviation

1 1.00 0.50
2 2.00 0.15
3 2.50 0.30

Post. Means of the mean
SMCVB VB MCMC

1.01 1.01 1.01
2.00 2.00 2.00
2.56 2.56 2.55

Post. Means of the Std Dev
SMCVB VB MCMC

0.53 0.53 0.53
0.15 0.15 0.15
0.26 0.26 0.27
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Climate Regime Shift Detection

• A regime shift is a term commonly used to describe an abrupt change
in some aspect of the characteristic behaviors associated with a
natural phenomenon.

• Climate variability is one such example of a natural phenomenon for
which there is much interest in understanding, and if possible,
predicting when changes in patterns might occur.

Rodionov, S. N. (2004), A sequential algorithm for testing climate regime
shifts, Geophys. Res. Lett., 31.
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Climate Regime Shift Detection

• Climate events can have a large impact on the environment, therefore
there has been interest in research investigating other such events
that have occurred over the years.

• The observed natural fluctuations in climate we will look at are
referred to as Pacific Decadal Oscillation (PDO).

• Extreme observations in the PDO correspond to large fluctuations in
the climate of the Pacific Basin and North American region.

• There is much scope for improving upon existing analytical
approaches.
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Climate Regime Shift Detection

• The majority of approaches proposed in the early literature use basic
statistical techniques such as tests of significant differences from one
time point to the next in the series.

• Some slightly more involved approaches were proposed more recently
but a difficulty of these was that they could not be used for time
points lying close to either end of the time series.

• Sequential analyses have been proposed in the literature but the
drawback of these is that although it is known that fluctuations in
climate can take place over time periods of varied lengths, a regime is
rigidly defined as spanning a defined time-period.
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Some Illustrative Graphs
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Summary

• A new hybrid Bayesian algorithm has been presented.

• It appears that this hybrid algorithm might lead to a better fit to the
data than can be achieved using a standard variational Bayes
approach in some cases.

• There is much scope for further development and useful application of
the ideas presented here.
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