
Bayesian Fault Tree Analysis
The distorted band of priors
Bayesian robustness for FTA

Example

Bayesian Robustness for Fault Tree Analysis

Chaitanya Joshi
(with Fabrizio Ruggeri & S.P. Wilson)

Department of Mathematics & Statistics,

University of Waikato, New Zealand.

13th Nov 2017
BoB 2017, Gold Coast.

Chaitanya Joshi (with Fabrizio Ruggeri & S.P. Wilson) Bayesian Robustness for Fault Tree Analysis

http://www.waikato.ac.nz/


Bayesian Fault Tree Analysis
The distorted band of priors
Bayesian robustness for FTA

Example

Motivation for this work..

Chaitanya Joshi (with Fabrizio Ruggeri & S.P. Wilson) Bayesian Robustness for Fault Tree Analysis

http://www.waikato.ac.nz/


Bayesian Fault Tree Analysis
The distorted band of priors
Bayesian robustness for FTA

Example

Fault Tree Analysis (FTA)

• To evaluate risk in large, safety critical systems.

• To quantify the probability of occurrence of an undesirable
event, called the Top event (TE).

Main assumption: Events are statistically independent.
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Bayesian Networks(BN) alternative to FTA

BN can be seen as a natural extension of FTA (FTA can be directly
mapped into a BN).

• Can incorporate local dependence between events.

• Enables both forward (prediction) as well as backward
(inference) analysis.

However BN approaches require specifying exact prior probabilities
for each elementary event and exact conditional probabilities for every
dependency!

• Accurate prior probabilities are often not known.

• Computational challenges!
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Fully Bayesian implementation of FTA

DePersis (2016)

• Elicit a prior distribution for each elementary event.

• Use simulations to derive the prior distributions for the
intermediate events and the TE.

• Find posterior distributions using importance sampling.

Assumes that elementary events are independent.
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Prior elicitation for FTA

• Eliciting the (Beta) priors using expert opinion is usually not
straightforward.

• Moment matching.
• Pairwise comparisons (using AHP)

• For very complex systems with little or no data, eliciting even a
mean value (of the probability of an event) can be quite
challenging for experts.

Elicited priors are likely to be inaccurate!
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Prior elicitation is prone to multiple errors!

• Uncertainty due to lack of enough prior information/knowledge.

• Using insufficient or inaccurate information to elicit priors.

• Errors introduced by the methods used for prior elicitation.

• Subjectivity/bias of experts.
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Prior mis-specification: snowball effect!

Consider small perturbations to the priors of each of the elementary
event.
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Prior mis-specification: snowball effect!

The resulting perturbation to the prior of the TE.

This effect is especially prominent for fault trees containing OR gates.
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Posterior influenced by prior

• Data on TE is often sparse and hence posterior is largely
determined by prior.

• TE is often an undesirable event - by definition unlikely to
occur (hopefully).

• Safety critical and/or very expensive applications, e.g.
spacecraft re-entry!

• Very little data, if any, available.

Prior mis-specification ≈ posterior mis-specification.
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Posterior influenced by prior

Posterior(green- dashed) vs prior (black):

Figure: (left) n = 3 and 1 failure and (right) n = 10 and 1 failure.
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A distortion function

A distortion function h is a non-decreasing continuous function
h : [0, 1] −→ [0, 1] such that h(0) = 0 and h(1) = 1. When h is used to
transform the distribution function F ,

Fh(X) = h ◦ F (x) = h[F (x)]

represents a perturbation of F in order to measure the uncertainty
about it. Note that Fh(X) is also a distribution function for a
particular random variable denoted by Xh and the distorted density is
given by

fh(X) = h′[F (x)] · f(x).
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Stochastic ordering

For two random variables X and Y , X is said to be smaller than Y in
the stochastic order sense (denoted by X ≤st Y ) if

FX(t) ≥ FY (t), ∀t ∈ R.

For absolutely continuous [discrete] random variables X and Y with
densities [discrete densities] fX and fY , respectively, X is said to be
smaller than Y in the likelihood ratio order sense (denoted by
X ≤lr Y ) if

fY
fX

increases over the union of the supports of X and Y .

It is well known that

X ≤lr Y ⇒ X ≤st Y.
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Convex and concave distortion functions

• If π is a specific prior belief with distribution function Fπ and h
is a convex (concave) distortion function in [0, 1], then
π ≤lr (≥lr)πh.

• If the decision maker is able to represent the changes to a prior
belief π by a concave distortion function h1 and a convex
distortion function h2, then it leads him to two distorted
distributions πh1

and πh2
such that πh1

≤lr π ≤lr πh2
.

• This defines the class of priors called the distorted band of
priors Γh1,h2,π as

Γh1,h2,π = {π′ : πh1
≤lr π′ ≤lr πh2

}. (1)

Arias-Nicolás et al. (2016).
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Distortion bands for a prior distribution

Elicited prior (black), lower (green) and upper (red) distortion bands.
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Power functions as distortion functions

A popular choice for distortion functions h1 and h2 are power
functions given by

h1(x) = 1− (1− x)α and h2(x) = xα, ∀α > 1. (2)

Note that if we take α = n ∈ N in (2), then Fπh1 (θ) = 1− (1−Fπ(θ))n

and Fπh2 = (Fπ(θ))n which correspond to the distribution functions of
the minimum and the maximum, respectively, of an i.i.d. random
sample of size n from the baseline prior distribution π.

• Power functions are easily used in applications and also give
interesting results.
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Power functions - elicitation of α

The Kolmogorov metric measures the maximum absolute difference
between the two distribution functions and is defined by

K(X,Y ) = sup
x∈R
|FX(x)− FY (x)|.

Kolmogotov metrics between elicited prior and its distortions are
K(π, πh1) and K(π, πh2)

Interpretation: How far off could the true prior be from the elicited
one in the worst case?

No more than 20%⇒ K = 0.2
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Power functions - elicitation of α

If the distortion functions are defined as in (2) then, the Kolmogorov
metric is given by the following expression (Arias-Nicolás et al.
(2016)):

K(π, πh1) = K(π, πh2) =
α− 1
α−1
√
αα

. (3)

Equation (3) can be used for eliciting α.

• Given K, find α using a computer program using (3).

• Alternatively, a rough estimate of α can be obtained assuming
α−1
√
αα ≈ α as

α ≈ 1

1−K
.
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Power functions as distortion functions

For distorted bands obtained using power functions, one can show
that:

• α controls the width of the distortion band in a strict monotonic
way (so a distorted band obtained using a smaller α is
completely contained inside the band obtained using a larger α).

• Stochastic order and likelihood order are equivalent.

Theorem

When the distortion functions are defined as in (2),
(i)X ≤st Y ⇔ X ≤lr Y , (ii) 1 ≤ α1 ≤ α2 ⇒ Γα1

⊂ Γα2
and (iii)

Γα → F (x) as α ↓ 1.
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Bayesian robustness for FTA

Given that a prior distribution has been elicited for each of the
elementary events.

Bayesian robustness for FTA - an outline

Step I: Build a distorted band of priors for each event.

Step II:Simulate through the FT using algorithms A1
- A4 to find the prior distribution and the distorted
band of priors for the intermediate events and the TE.

Step III:Find the posterior distribution for the TE
given the prior distribution and the data.

Step IV:Find the lower and the upper distortion bands
for the posterior distribution of the TE given the
distorted bands for the prior and the data.
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Bayesian robustness for FTA

Step I: Build a distorted band of priors for each event i.

• Assume that the prior distribution πi has been elicited for each
of the elementary events.

• Elicit K and therefore α using Equation (3).

• Determine the lower bound πh1i
using the concave h1i in 2.

• Determine the upper bound πh2i using the convex h2i in 2.
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Bayesian robustness for FTA

Step II:Simulate through the FT using algorithms A1 - A4 to find
the prior distribution and the distorted band of priors for the
intermediate events and the TE.

• Algorithm A1: to simulate prior distributions for intermediate
and top events.

• Algorithm A2: to simulate distortion bands for the prior
distributions for intermediate and top events.

• Algorithm A3: to simulate from πh1i for h1i concave.

• Algorithm A4: to simulate from πh2i
for h2i convex.
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Bayesian robustness for FTA

Step II: Algorithms A3 and A4 are rejection sampling based
algorithms making use of the fact that h1i (h2i) is concave (convex)
and hence has a derivative that is monotonically decreasing
(non-decreasing).
Algorithm A3: to simulate from πh1i

for h1i concave

1 Sample θij ∼ πi(θi), j = 1, . . . , N, i = 1, 2, 3 and uj ∼ U(0, 1)
independently.

2 For each j, check if uj ≤ h′1[Fi(θij)]
h′1[0]

• If this holds, accept θj as a realisation of πh1i
.

• If not, reject the value θij .

Chaitanya Joshi (with Fabrizio Ruggeri & S.P. Wilson) Bayesian Robustness for Fault Tree Analysis

http://www.waikato.ac.nz/


Bayesian Fault Tree Analysis
The distorted band of priors
Bayesian robustness for FTA

Example

Bayesian robustness for FTA

Step II: Algorithms A2 assumes that it is sufficient to sample from
πh1i ’s to obtain πh1 and to sample from πh2i ’s to obtain πh2 . It can
be proven that this assumption is indeed valid.

Theorem

In order to obtain the distorted lower (upper) bands for the
intermediate/top event by sampling from them, it is necessary and
sufficient to sample only from the respective lower (upper) bands of
the elementary events.

Chaitanya Joshi (with Fabrizio Ruggeri & S.P. Wilson) Bayesian Robustness for Fault Tree Analysis

http://www.waikato.ac.nz/


Bayesian Fault Tree Analysis
The distorted band of priors
Bayesian robustness for FTA

Example

Bayesian robustness for FTA

Steps III and IV: Posterior distribution and the distorted band for
the posterior distribution are obtained using the importance sampling
algorithm by DePersis (2016).

• Proposal distribution - prior distribution of TE.

• Importance weights using the likelihood.
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Example: Spacecraft re-entry

Event Description Event Description
TE Explosion of the spacecraft E13 Chemical reactions
E21 Chemical reaction of propellant and air E14 Over pressure
E22 Burst of pressure vessel E15 Short circuit
E23 Chemical reaction between hypergolic propellants E16 Corrosion
E24 Burst of battery cell E17 Over charge
E11 Sudden release of propellant (E22) E18 Over discharge
E12 Slow release of propellant E19 Over temperature
E01 Valve leakage E110 Cell degradation
E02 Tank destruction
E03 Pipe rupture
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Example: Spacecraft re-entry

Figure: [a] The fault tree used to model the spacecraft re-entry
problem and [b] the simplified fault tree in minimum cut-set
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Example: Spacecraft re-entry

Event Weight Range Elicited prior
E22 0.83333 (0.01, 0.05) Beta(6.3,233) *
E23 0.16667 (0.002,0.01) Beta(6.4,1214)
E01 0.42857 (0.01, 0.04) Beta (8.3,360)*
E02 0.1428 (0.0033,0.0133) Beta(8.3,1104)
E03 0.42857 (0.01,0.04 ) Beta(8.3,360)
E13 0.125 (0.014, 0.055) Beta (8.4,261)*
E14 0.125 (0.014, 0.055) Beta (8.4,261)
E15 0.125 (0.014, 0.055) Beta (8.4,261)
E16 0.125 (0.014, 0.055) Beta (8.4,261)
E17 0.125 (0.014, 0.055) Beta (8.4,261)
E18 0.125 (0.014, 0.055) Beta (8.4,261)
E19 0.125 (0.014, 0.055) Beta (8.4,261)
E110 0.125 (0.014, 0.055) Beta (8.4,261)

Table: Elicited priors obtained using the AHP process. * indicates
that the prior was elicited using the range provided by the expert
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Example: Spacecraft re-entry

Likelihood:

• TE corresponds to whether the spacecraft exploded (TE = 1) or
not (TE = 0) during the re-entry.

• TE ∼ Bernoulli(θTE), where θTE = 1−
∏
j(1− θj).

• If the data was obtained from n identical spacecraft re-entries
then TE ∼ Binomial(n, θTE).

• We assume that only the top event is observed and that none of
the elementary events are directly observed.

Distortion bands: We assume that K = 0.15 and obtain α = 1.51

using Equation 3.
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Example: Spacecraft re-entry

Figure: (Top left) the unique prior distributions in Table 1. (Remaining) each of the priors
and the distorted bands obtained - lower band in green - dotted and upper band in red -dashed.
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Example: Spacecraft re-entry

Figure: (Left) The prior distribution of θTE and its distortion bands,
(right) the posterior distribution of θTE and its distortion bands:
lower band in green - dotted and upper band in red -dashed.
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Summary

• This work:

• Shows how distortion bands obtained using power functions
can be used in Bayesian FTA approaches.

• Provides the sampling algorithms to implement Bayesian
FTA.

• Prior robustness study essential!

• Distortion bands (Arias-Nicolás et al. 2016) have many
practical advantages.

• Further/ current work:

• Prior robustness for ABC methods.
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