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Introduction

Background

• Learning from high-dimensional data is one of the emerging
tasks in machine learning
• In some cases, dimension p is larger than sample size n

• Sparsity is an important concept
• Optimization based approach such as LASSO has been well

studied
• LASSO can be considered as a method of finding MAP estimate

assuming the Laplace prior
• Full information of the posterior distribution is useful for some

problems
• Ex: Bayesian experimental design

• Some methods for sparse Bayesian modeling
• Relevance Vector Machine, Gibbs sampler (Bayesian LASSO),

Variational Bayes
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Introduction

Past works

• Some extensions of LASSO:
• Group LASSO: Group Sparsity
• Fused LASSO: Sparsity + Smoothness

• Parameter is sparse and locally constant

• Some Bayesian studies for extended LASSO models:
• Kyung et al, 2010: Gibbs sampler for Group LASSO, Fused

LASSO, Elastic net
• Babacan et al, 2014: Variational Bayes for Group LASSO

Our work

• Variational Bayes for sparse and smooth model (Fused LASSO
model)
• Variational Bayes is more efficient than Gibbs sampler
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Introduction

Relationship with past works:

Sparsity only Group Sparsity Sparsity + Smoothness
Optimization based Tibshirani, 1996 Yuan and Lin, 2006 Tibshirani, 2005

MCMC Park and Casella, 2008 Kyung et al., 2010 Kyung et al., 2010
Variational Bayes Babacan et al., 2014 Babacan et al., 2014 Our work

Strength of our work:

• Considering sparsity and smoothness: effective for sparse and
smooth data
• Ex: Denoising for sparse image

• Variational Bayes: more efficient than Gibbs sampler
• Applicable for very high dimensional data analysis
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Problem setup

Linear regression model:

y = Xβ + ϵ

• y ∈ Rn: Observation vector
• X ∈ Rn×p: Design matrix
• β ∈ Rp: Unknown parameter
• ϵ ∼ N(0, s−1Ip): Gaussian noise vector (s: precision parameter)

Assumption:

Sparsity: β is sparse (number of nonzero elements is small)
Smoothness: βi and βj take similar values for (i, j) ∈ E

• G = (V ,E) is a predefined graph

How to statistically model sparsity and smoothness?
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Straightforward approach

Assume Laplace priors for
{
βj
}

and
{
βi − βj

}
p(β) ∝

p∏
j=1

exp
(
−
|βj|√aτ,j

)
Sparsity

∏
(j,k)∈E

exp
(
−
|βj − βk|√aν,jk

)
Smoothness

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

• MAP estimator corresponds to the
Fused LASSO estimator

• Difficult to calculate the posterior
distribution

• What values should be set for α?

⇒ needs another approach
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Hierarchical representation of Laplace distribution

Laplace distribution can be expressed as a scale mixture of Gaussian
with exponential mixture:

√
α

2
exp

(
−
√
α|β|

)
=

∫ ∞

0
p(β|τ)p(τ|γ)dτ

p(β|τ) = N(β|0, τ−1)

p(τ|γ) = γ
2

exp
(
−γ

2
τ
)

• This property is used in the past Bayesian studies on the sparse
modeling

• If we use inverse gamma distribution for the scale mixture, the
marginal distribution becomes Student’s t distribution
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Sparse-Smooth hierarchical modeling

Gaussian distribution for β:

p(β|τ ,ν) ∝
p∏

j=1

exp
(
−τjβ2

j

) ∏
(j,k)∈E

exp
(
−νjk(βj − βk)2

)
Exponential (or IG) distribution for τ and ν:

p(τ |aτ ) =
p∏

j=1

Exp(τj|aτ,j), p(ν |aν) =
∏

(j,k)∈E
Exp(νjk|aν,jk)

Gamma distribution for aτ , aν :

p(aτ ) =
p∏

j=1

Gam(aτ,j|θτ, kτ), p(aν) =
∏

(j,k)∈E
Gam(aν,jk|θν, kν)
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Variational Bayes

Joint distribution:

p(y,β, s, τ ,ν, aτ , aν) = p(y|β, s)p(β|τ ,ν)p(τ |aτ )p(ν |aν)p(aτ , aν)p(s)

We want to calculate posterior distribution p(β|y)
⇒ complex integral calculation is required

Mean field approximation:
For θ = (β, τ ,ν, aτ , aν , s), find an approximate distribution q(θ) which
minimizes Kullback-Leibler divergence:

q∗(θ) = argmin
q(θ)

∫
q(θ) ln

q(θ)
p(θ|y)

dθ

w.r.t. factorized distribution q(θ) = q(β)q(τ ,ν)q(aτ , aν)q(s)
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Variational Bayes

⟨·⟩: Expectation w.r.t. the corresponding distribution

Update equation for q(β):

q∗(β) = N(β|β̄,Σβ),

β̄ = ⟨s⟩ΣβXTy,

Σβ =
(
⟨s⟩XTX +

⟨
Sτ ,ν

⟩)−1

Update equation for q(τ ,ν):

q∗(τ ,ν) =
p∏

j=1

Gig
(
τj

∣∣∣∣⟨aτ,j
⟩
,
⟨
β2

j

⟩
,

1
2

) ∏
(j,k)∈E

Gig
(
νjk

∣∣∣∣∣⟨aν,jk
⟩
,
⟨(
βj − βk

)2
⟩
,

1
2

)
Gig(x|a, b, ρ) is the generalized inverse Gaussian:

Gig(x|a, b, ρ) ∝ xρ−1 exp
(
−1

2
(ax + bx−1)

)
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Variational Bayes

Update equation for q(aτ , aν):

q∗(aτ , aν) =
p∏

j=1

Gam
(
aτ,j

∣∣∣∣kτ + 1, θτ +
⟨
τj
⟩
/2

)
·

∏
(j,k)∈E

Gam
(
aν,jk

∣∣∣∣kν + 1, θν +
⟨
νjk

⟩
/2

)
Update equation for q(s):

q∗(s) = Gam
(
s
∣∣∣∣ks + n/2, θs +

⟨
(y − Xβ)2

⟩
/2

)
Assuming that p(s) is Gam(s|ks, θs)
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Experiment on synthetic data

• We considered two cases:

Case 1: True parameter is β∗1 = (010, 210, 010, 210)
(sparse and smooth)

Case 2: True parameter is β∗2 = (0, 2, 0, 2, . . .) ∈ R40

(sparse, but not smooth)

• Randomly generate sample (size = 40)

• Number of experiments is 100

• For p(τ ,ν), besides exponential distribution, we also consider
inverse gamma distribution
• Referred as Laplace when exponential distribution is assumed

and Student when inverse gamma distribution is assumed
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Experiment on synthetic data

Mean squared error:

Lasso Laplace Student
β∗1 5.75 × 10−1 8.07 × 10−3 7.98 × 10−3

β∗2 5.53 × 10−1 1.37 1.11

Example of estimation result:
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Application for denoising of sparse image

β ∈ R60×60:
Original sparse image
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y ∈ R60×60:
Noisy image
y = β + ϵ

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Graph G: 2D-grid
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...
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Problem: Estimate the original image from the noisy image

• In this experiment, τ , that controls sparsity, is fixed
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Application for denoising of sparse image

PSNR [DB] and SSIM of restored images:
method Exponential Gamma TV

parameter aν = 1.0 aν = 10.0 aν = 100.0 bν = 1.0 bν = 0.1 bν = 0.01 λ=0.01 λ=0.05 λ=0.1

PSNR 24.89 24.96 25.90 24.18 24.46 25.04 24.51 24.85 24.49
SSIM 0.5541 0.5680 0.6257 0.5407 0.5620 0.6138 0.5670 0.6119 0.6028

Restored images:

Original Exp (aν=1.0) Gam (bν=1.0) TV (weight=0.01)

Observation Exp (aν=10.0) Gam (bν=0.1) TV (weight=0.05)

Exp (aν=100.0) Gam (bν=0.01) TV (weight=0.1)
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Summary

• We proposed hierarchical model for the problem of estimating
parameter which is sparse and smooth.

• We also proposed an approximate estimation algorithm based
on the variational Bayes method.

• The effectiveness of the proposed method was proved by
experiments on synthetic data and real image data
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