Waste not, want not: using the data, all the data.

Susan Holmes
http://webstat.stanford.edu/ susan/
@SherlockpHolmes

Bio-X and Statistics, Stanford University

BonB, November 2017




Solving some of the challenges when working on noisy
biological data analyses.

\{

Heteroscedasticity and sample depth inequality.

\{

Poor data quality, information leakage.

\{

Tree and graph integration, uncertainty visualizations.

\{

Multi-table data integration.
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Waste water treatment plants




Heterogeneous Data Workflow with phyloseq
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Reproducible Research Workflow
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See complete workflow on Bioconductor channel of FI000:
http://f| 000research.com/articles/5-1492/v|
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Heterogeneous Data Objects

Object oriented input and data manipulation with phyloseq

phyloseq
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https://joey711.github.io/phyloseq/

phyloseq graphics

plot_ordination()

plot_network() P2 " plot_tree()

plot_bar() ;-
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How to deal with different numbers of reads?

rarefaction curves

Sanders 1968
non-parametric richness
estimate coverage
Normalize?

0

Speces

Sanders, H. L. (1968). Marine
benthic diversity: a comparative 0 8 00 150 200 0
study. American Naturalist



Current Method: Rarefying

Ad hoc library size normalization by random subsampling without
replacement.

I. Select a minimum library size, N min. This has also been called the
rarefaction level though we will not use the term here.

2. Discard libraries (microbiome samples) that have fewer reads than
NL,min-

3. Subsample the remaining libraries without replacement such that
they all have size N .

Often N nin is chosen to be equal to the size of the smallest library
that is not considered defective, and the process of identifying defective
samples comes with a risk of subjectivity and bias. In many cases
researchers have also failed to repeat the random subsampling step (3)
or record the pseudorandom number generation seed/process — both
of which are essential for reproducibility.



Reduction of Data to Proportions

Many software programs automatically reduce the data to relative
proportions, losing the information about library sizes or read counts.
This makes comparisons very difficult.
Statistical Formulation: When making a (testing) decision, reducing
results from a Binomial distribution into a proportion does not give an
admissible procedure.

:An admissible rule is an optimal rule for making a decision
in the sense that there is no other rule that is always better than it.



How to compress the data?

(. N

¢ A )
‘ ‘Fmal
Results
...without losing too much information?

The proportion is not a statistic for the
Binomial.

A statistic T(X) is called sufficient for 0 if it contains all the information in
X about 0.

Standard:

The joint probability distribution of the data conditional on the value of a
sufficient statistic for a parameter; does not depend on that parameter:
Po(X|T(X) = T) does not depend on 6.


http://en.wikipedia.org/wiki/Sufficient_statistic

Equivalent Definitions

Mutual Information:

=3 Y Proylloga ¥ _ K(P(x,y), PP(y))

xeX yey P(JPly)
A function of the data T(X) is a sufficient statistic for the distribution if
1(6,X) = 1(6, T(X))

for all distributions on ©.

Note:

For a Bayesian, no matter what prior one uses, one only has to consider
the sufficient statistic for making inference, because the posterior
distribution given T = T(x) is the same as the posterior given the data
X =x.



Aim of the studies: Differential Abundance

Like differentially expressed genes, a species/OTU is considered
differentially abundant if its mean proportion is significantly different
between two or more sample classes in the experimental design.
Optimality Criteria:
Sensititivity or Power True Positive Rate.

Specificity True Negative Rate.

We have to control for many sources of error (blocking, modeling, etc..)



Rarefaction and Reduction to Proportions are Inadmissible

The following is a minimal example to explain why rarefying is statistically
inadmissible, especially with regards to variance stabilization.

Suppose we want to compare two different samples, called A and B,
comprised of 100 and 1000 reads, respectively. In these hypothetical

communities only two types of microbes have been observed, OTU! and
OoTUZ



According to Table |, Left.

Table: A minimal example of the effect of rarefying on power.

Orriginal Abundance Rarefied Abundance

A B A B
OoTul 62 500 OoTul 62 50
OoTU2 38 500 OoTU2 38 50

Total 100 1000 100 100
Standard Tests for Difference
P-value X Prop  Fisher

Original 0.0290 0.0290 0.0272
Rarefied O0.1171 0.1171 0.1169

Hypothetical abundance data in its original (Top-Left) and rarefied (Top-Right) form, with

corresponding formal test results for differentiation (Bottom).



Formally comparing the two proportions according to a standard test is
done either using a x” test (equivalent to a two sample proportion test
here) or a Fisher exact test. This requires knowledge of the number of
trials.

By rarefying (Table |, top-right) so that both samples have the same
number of counts, we are no longer able to differentiate between them.
This loss of power is completely attributable to reducing the size of B by a
factor of 10, which also increases the confidence intervals corresponding
to each proportion such that they are no longer distinguishable from
those in A, even though they are distinguishable in the original data.

The variance of the proportion’s estimate p is multiplied by 10 when the
total count is divided by 10.



Equalization of variances

In this binomial example the variance of the proportion estimate is
Var(%) = pq E( ), a function of the mean. This is a common
occurrence and one that is traditionally dealt with in statistics by applying
variance-stabilizing transformations.

However, in order to find the right transformation, we need a good
model for the error.



Mixture Modeling works Miracles

> Beta-Binomial (deepSNV).
» Zero inflated Poisson or Gaussian.

» Gamma-Poisson and ZINB.

Mixtures are ubiquitous because of a mathematical theorem


http://en.wikipedia.org/wiki/De_Finetti's_theorem

Gamma-Poisson mixture
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Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible
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_W-“ Download =

McMurdie and Holmes (2014) “Waste Not, Want Not: Why rarefying
microbiome data is inadmissible” Negative Binomial as a
hierarchical mixture for read counts

If technical replicates have same number of reads: Sj,

Poisson variation with mean p = sju;.

Taxa 1 incidence proportion ;.

Number of reads for the sample j and taxa i would be

Kij ~ Poisson (sjuy)

Same as DESeq for RNA-seq



Variance Stabilization

Prefer to deal with errors across samples which are independent and
identically distributed.

In particular homoscedasticity (equal variances) across all the noise levels.
This is not the case when we have unequal sample sizes and variations in
the accuracy across instruments.

A standard way of dealing with heteroscedastic noise is to try to
decompose the sources of heterogeneity and apply transformations that
make the noise variance almost constant.

These are called variance stabilizing transformations.



Take for instance different Poisson variables with mean ;. Their
variances are all different if the L are different. However, if the square
root transformation is applied to each of the variables, then the
transformed variables will have approximately constant variance. Actually
if we take the transformation x — 2,/x we obtain a variance
approximately equal to |..



P variance stabilizing transformation
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Modeling read counts

If technical replicates have same number of reads: Sj,
Poisson variation with mean p = sju;.

Taxa 1 incidence proportion ;.

Number of reads for the sample j and taxa i would be

Kij ~ Poisson (sju;)



Modeling Counts

For biological replicates within the same group — such as treatment or
control groups or the same environments — the proportions 1u; will be
variable between samples.

Call the two parameters 1; and 13;91'

So that U;; the proportion of taxa i in sample j is distributed according
to Gamma(ry, %).

Ki; have a Poisson-Gamma mixture of different Poisson variables.

This gives the Negative Binomial with parameters (m = u;s;) and ¢; as
a satisfactory model of the variability.




Different Conditions

Samples belong to different conditions such as treatment and control or
different environments.

Estimate the values of the parameters separately for each of the different
biological replicate conditions/classes.

Use the index c for the different conditions, we then have the counts for
the taxa i and sample j in condition ¢ having a Negative Binomial
distribution with m. = u;.s; and ¢;ic so that the variance is written

WicSj + d)icsjzuizc )

Estimate the parameters u;. and ¢;. from the data for each OTU and
sample condition.

The end result provides a variance stabilizing transformation of the data
that allows a statistically efficient comparisons between conditions.

This application of a hierarchical mixture model is very similar to the
random effects models used in the context of analysis of variance.



Overdispersion in |6S rRNA-seq Data

Common-Scale Variance versus Mean for Microbiome Data.

Each point in each panel represents a different OTU’s mean/variance
estimate for a biological replicate and study.

The data in this figure come from the Global Patterns surveyand the
Long-Term Dietary Patterns study(Right) Variance versus mean abundance
for rarefied counts.

(Left) Common-scale variances and common-scale means, estimated
according to the DESeq2 package.

The dashed gray line denotes the 02 = i case (Poisson; ¢ = 0). The
cyan curve denotes the fitted variance estimate using DESeq.
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Improvement in Power and FDR

Performance of differential abundance detection with and without
rarefying summarized by “Area Under the Curve” (AUC) metric of a
Receiver Operator Curve (ROC) (vertical axis).

Briefly, the AUC value varies from 0.5 (random) to |.0 (perfect).

The horizontal axis indicates the effect size, shown as the factor applied
to OTU counts to simulate a differential abundance.

Each curve traces the respective normalization method’s mean
performance of that panel, with a vertical bar indicating a standard
deviation in performance across all replicates and microbiome templates.



The right-hand side of the panel rows indicates the median library size,
N, while the darkness of line shading indicates the number of samples
per simulated experiment.

Color shade and shape indicate the normalization method.

Detection among multiple tests was defined using a False Discovery Rate
(Benjamini-Hochberg) significance threshold of 0.05.



Number Samples per Class: —— 3 —— 5
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Sensitivit:

1 1
10 15 20
Effect Size




Part Il

Muei/didoran Data (7t egraz‘/on




Useful first order representation: Many Matrices

\{

Time series of abundance matrices.

v

Bootstrap and Bayesian posterior analyses for many networks.

\4

Different types of data on same samples (taxa counts, clinical
variates, spatial location).

» Networks in longitudinal studies.
» Explanatory (environmental) variables, Response variables.
Holmes (2005), Duality Diagrams.



We can add information through choice of distances

Variables are ‘vectors’

Sample data can often be seen i
in data point space

as points in a state space.
RTL
RP

Xp

tO)yy —
BRI =<1 =g x'Dy =< X,y >p
Duality : Transposable data.



Data Analysis: Geometrical Approach

i. The data are p variables measured on . observations.
ii. X with 1 rows (the observations) and p columns (the variables).
iii. D is an n X n matrix of weights on the “observations”, which is
most often diagonal but not always.
iv. Symmetric definite positive matrix Q, weights on

L 0 00
1
0 &5 00
. variables, often Q = 2
® o 0 0 0
. ® . .
® o o0 L
X, 6. ﬁ.. e . 0‘%




Generalized Principal Component Analysis

gPCA seeks to replace the original (centered) matrix X by a matrix of

lower rank, this can be solved using the singular value decomposition of
X

X =USV’', with U'DU = I, and V'QV = I,, and S diagonal

XX’ = US?U’, with U'DU =1, and S> = A

PCA is a linear nonparametric multivariate method for dimension
reduction. D and Q are the relevant metrics on the dual row and
column spaces of n samples and p variables.



Discriminant Analysis is a special case

Case of a categorical response variable (group labels).
Let A be the g X p matrix of group means in each of the p variables.
This satisfies

Y'DX = AvA where Ay = Y'DY = diag(wi, wy,...,wg),

and wy = Ziiyik:1 di, the wy’s are the group weights, as they are the
sums of the weights as defined by D for all the elements in that group.
Call T the matrix T = X'DX, a generalized between group
variance-covariance is B = A'AyA and call the between group variance
covariance the matrix W = (X — YA)'D(X — YA).
Huyghens’ formula:

T=B+W



Classical Dimension Reduction Algorithm: PCoA or MDS

Given an n X . matrix of squared interpoint distances D o D, one can
solve for points achieving these distances by:

I. Double centering the interpoint distance squared matrix:
B =—JHD ¢ DH.

2. Diagonalizing B: B = UAUT.
3. Extracting X: X = UA2,



(a) MDS of OTUs (b) DPCoA community plot (c) DPCoA OTU plot

phylum
4C0d-2
Actinobacteria
Bacteroidetes

subject - Candidate division TM7

D
A E
F

« Cyanobacteria
- Firmicutes
- Fusobacteria

Axis 2: 13.3%

- Lentisphaerae
Proteobacteria
Synergistetes
Verrucomicrobia

(@) PCoA/MDS of the taxa based on the patristic distance, (b) community
and (c) species points for DPCoA after removing two outlying species.



Double Principal Coordinate Analysis

Pavoine, Dufour and Chessel (2004), Purdom (2010) and Fukuyama et al.
(2011). . Suppose we have n species in p locations and a matrix A giving
the squares of the pairwise distances between the species on the tree
(patristic). Then we can

» Use the distances between species to find an embedding in n — 1
-dimensional space such that the euclidean distances between the
species is the same as the distances between the species defined in
A.

> Place each of the p locations at the barycenter of its species profile.
The euclidean distances between the locations will be the same as
the square root of the Rao dissimilarity between them.

» Use PCA to find a lower-dimensional representation of the
locations.

Give the species and communities coordinates such that the inertia
decomposes the same way the diversity does.



Antibiotic Stress

We next want to visualize the effect of the antibiotic. Ordinations of the
communities due to DPCoA with information about whether the
community was stressed or not stressed (pre cipro, interim, and post
cipro were considered “not stressed”, while first cipro, first week post
cipro, second cipro, and second week post cipro were considered
“stressed”).

DPCoA separates out the stressed communities along the first axis (in
the direction associated with Bacteroidetes), although only for subjects D
and E.



Community points as represented by DPCoA. The labels represent
subject plus antibiotic condition.




Conclusions for Antibiotic Stress

DPCoA also separates the subjects and the stressed versus non-stressed
communities, and examining the community and taxa ordinations can tell
us about the differences in the compositions of these communities.
Much larger study under way with 100 patients and more than 8,000
samples.



treelapse (Kris Sankaran):Key elements

https://github.com/krisrs1128/treelapse/
Enable a rapid change of focus and brushing on the tree and the time
series.
treelapse currently supports four kinds displays
» DOI Trees: Navigate large trees according to the Degree-of-Interest
(DOQI) defined by clicking on different nodes.
» DOI Sankeys: Create a DOI Tree where abundances are split across
several groups.
» Timeboxes: Visually query a (tree-structured) collection of time
series, and see which nodes are associated with selected series.
> Treeboxes: The converse of timeboxes — select nodes and see
which series are associated.

http://statweb.stanford.edu/~krissl/antibiotic.html.


https://github.com/krisrs1128/treelapse/
http://statweb.stanford.edu/~kriss1/antibiotic.html
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Fukewyama,Rumber,Sanckaran, et a/., PLOS Comp Bio., 20!

Multidomain analyses of a longitudinal human microbiome
intestinal cleanout perturbation experiment




Subject effect is the strongest
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Multidomain data: multiple table methods

In PCA we compute the variance-covariance matrix, in multiple table
methods we can take a cube of tables and compute the RV coefficient of
their characterizing operators.

We then diagonalize this and find the best weighted ‘ensemble’.

This is called the ‘compromise’ and all the individual tables can be
projected onto it.



Multi-table - multidomain methods

We generalize "covariation” in several directions through the idea of
inertia.

In physics: inertia is a weighted sum of distances of weighted points.
This enables us to use abundance data in a contingency table and
compute its inertia which in this case will be the weighted sum of the
squares of distances between observed and expected frequencies, such
as is used in computing the chis-quare statistic.

Another generalization of variance-inertia is the useful Phylogenetic
diversity index. (computing the sum of distances between a subset of
taxa through the tree).

We also have such generalizations that cover variability of points on a
graph taken from standard spatial statistics.



Co-lnertia

When studying two variables measured at the same locations, for
instance PH and humidity the standard quantification of covariation is the
covariance.

sum(x1 «yl +x2 xy2 + x3 xy3)

if x and y co-vary -in the same direction this will be big.

A simple generalization to this when the variability is more complicated
to measure as above is done through Co-Inertia analysis (CIA).
Co-inertia analysis (CIA) is a multivariate method that identifies trends
or co-relationships in multiple datasets which contain the same samples
or the same time points. That is the rows or columns of the matrix have
to be weighted similarly and thus must be matchable.



RV coefficient

The global measure of similarity of two data tables as opposed to two
vectors can be done by a generalization of covariance provided by an
inner product between tables that gives the RV coefficient, a number
between 0 and |, like a correlation coefficient, but for tables.

B Tr(A'B)
-~ /T (A’A)/Tr(B'B)

RV(A, B)

Survey on RV: Josse, Holmes (2016)..


https://arxiv.org/pdf/1307.7383v3.pdf

Sparse CCA, then PCA

CCA: Canonical Correlation Analysis.
PCA: Principal Components Analysis.

> There are two tables in the study presented here, one for microbes
and another with metabolites. 12 samples were obtained, each with
measurements at 637 m/z values and 20,609 OTUs; however, about
96% of the entries of the microbial abundance table are exactly zero.

» CCA chooses a subset of available features that capture the most
co-Inertia.

» We then apply PCA to this selected subset of features. In this sense,
we use sparse CCA as a screening procedure, rather than as an
ordination method.



## Call: CCA(x = t(X), z = t(metab), penaltyx = 0.15,
## penaltyz = 0.15)
##

## Num non-zeros u's: 5

## Num non-zeros v's: 15

## Type of x: standard

## Type of z: standard

## Penalty for x: L1 bound is 0.15
## Penalty for z: L1 bound is 0.15
## Cor (Xu,Zv): 0.974

With these parameters, 5 microbes and |5 metabolites have been
selected, based on their ability to explain covariation between tables.
Further, these 20 features result in a correlation of 0.974 between the
two tables.

The microbial and metabolomic data reflect similar underlying signals.
To relate the recovered metabolites and OTUs to characteristics of the
samples on which they were measured, we use them as input to an
ordinary PCA.
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A PCA triplot produced from the CCA selected features in from
multiple data types (metabolites and OTUs). Triangles for Knockout and
circles for wild type. The main variation in the data is across PD and ST
samples (different diets).

Kashyap PC, et al.: Genetically dictated change in host mucus
carbohydrate landscape exerts a diet-dependent effect on the gut
microbiota. Proc Natl Acad Sci U S A. 2013; 110(42): 17059-17064.



Sparse CCA method for the CC perturbation data.

Create multi-table correlations with sparsity: more interpretability.
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Tree-informed prior modulating deep branchs

DPCoA emphasize the deep branches.
» Q Kernel : Qj; represents shared ancestral branch length between
species i and j.
» Covariance of a Brownian motion run along the branches of the
tree.

XiNN(Hi)G%H) p'iNN(OaO%Q))i:L--')n-
» Inference using this prior regularizes towards this structure.
Lilxi = x ~ N(O‘Z_]SX, S) S = ((Y]_ZQ_] 3 0'2_2]1)_]

gPCA on (X, S, 1)
01/02 — 0 then PCA. 0,/07 — 0 then DPCoA.
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Results from tree-based sparse discriminant analysis.
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Enterotypes of the human gut microbiome

nce Levener”,
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Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still
based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faccal
metagenomes of individuals from four countries with previously published data sets, here we identify three robust
clusters (referred to as enterotypes hereafter) that are not nation or continent spe fic. We also confirmed the
enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not
continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states
that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but
abundant molecular functions are not necessarily provided by abund species, highlighting the importance of a
functional analysis to understand microbial communities. Although individual host prnpertleﬂ such :|s body mass
the nhesrusd enterndvnee data-driven P
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http://statweb.stanford.edu/~susan/papers/PSBRR.html

Summary of the study

>

Choose the data transformation (here proportions replaced the
original counts).
... log, rlog, subsample, prop, orig.
Take a subset of the data, some samples declared as outliers.
leave out 0, I, 2 ,..,9, + criteria (10)......
Filter out certain taxa (unknown labels, rare, etc...)
.. remove rare taxa (threshold at 0.01%, 1%, 2%,...)
Choose a distance.
... 40 choices in vegan/phyloseq.
Choose an ordination method and number of coordinates.
... MDS, NMDS, k=2,3,4,5..
Choose a clustering method, choose a number of clusters.
... PAM, KNN, density based, hclust ...
Choose an underlying continuous variable (gradient or group of
variables: manifold).

Choose a graphical representation.



There are thus more than 200 million possible ways of analyzing this data:

5x 100 x 10 x40 x 8 x 16 x 2 x 4 = 204800000



Resources and Workflows

http link to wor!
local link to wo



http://bios221.stanford.edu/Multitable-Resources.html
file://localhost/Users/susan/Dropbox/Fall17/Multidomain/Multitable-Resources.html

Useful parallel between word-topic modeling and
bacteria-communities

1st Course Interim 2nd Course Post

Time

Figure 1: Boxplots represent approximate posteriors for estimated mixture mem-
berships 04, and their evolution over time. Each row of panels provides a dif-
ferent sequence of 8,4 for a single k, and different columns distinguish different
phases of sampling. Note that the y-axis is on the g-scale, which is defined as
a translated logit, g (pP) (logp1 — logp, - . ., log px — log p). The first and
second antibiotic time courses result in meaningful shifts in these sequences,
and that there appear to be long-term effects of treatment among bacteria in
Topic 3.

Kris Sankaran’s Topic Page


https://github.com/krisrs1128/microbiome_plvm/

Benefitting from the tools and schools of Statisticians.......

Thanks to the R and Bioconductor community:
Chessel and team for ade4 , Wolfgang Huber and his team for DESeq2,
and Emmanuel Paradis for ape.

3 Studio



Collaborators:

Josh Elias

Justin Sonnenburg

Elisabeth Purdom
‘-—-‘ —

el T
Bo~

A
Sergio Bacallado




Postdoctoral Fellows Paul (Joey) McMurdie, Ben Callahan, Christof Seiler,
Pratheepa Jeganathan

Students: John Cherian, Diana Proctor, Daniel Sprockett, Lan Huong
Nguyen, Julia Fukuyama, Kris Sankaran, Claire Donnat.

Funding from NIH TRO| and NSF-DMS.



Better Reproducibility

l source.Rmd

# Main title

This is an [R Markdown](my.link.com)
document of my recent analysis.

## Subsection: some code
Here is some import code, etc.

“{r}
library("phyloseq")
library("ggplot2")
physeq = import_biom(“datafile.biom”)
plot_richness(physeq)

Our Goal with Collaborators:
Reproducible analysis workflow
with R-markdown

phyloseq +
ggplot2 +
etc.
knitr::knit2html()




Reproduce our research

\{

Comeplete workflow from reads to community networks,
F1000Research. FI000Research paper

» Pregnancy study, PNAS 2015 Delivery Perturbation

\4

Enterotypes, oral microbiome PSB 2016.

» Waste not, want not paper, Plos Comp Bio. supplemental: Waste
not, want not


http://f1000research.com/articles/5-1492/v1
http://statweb.stanford.edu/~susan/papers/PNASRR.html
http://statweb.stanford.edu/~susan/papers/Pregnancy/PNAS_Delivery.html
http://statweb.stanford.edu/~susan/papers/PSBRR.html
http://joey711.github.io/waste-not-supplemental/
http://joey711.github.io/waste-not-supplemental/
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