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Probabilistic Numerical Computation

Consider the following school boy and girl differential equation

du

dt
= θu, u(t = 0) = 1.

This is the simplest example model used to describe Malthusian
population growth e.g. bacterial growth and radioactive decay. Simplest
representation of compound interest in finance.

Every school boy and girl knows the solution:

u(t; θ) = exp(θt)

Despite the function u(t; θ) being implicitly defined it is a fully
deterministic object.

Given the initial value then u(t; θ) at any point in the future is fully
determined.
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Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

But wait.....

The rate parameter θ may be an empirically derived parameter.

This immediately introduces uncertainty into our deterministic world.

Our uncertainty in θ can be described using the calculus of probability

This uncertainty in θ propagates and induces uncertainty in u(t; θ)

Uncertainty θ ∼ N (µ, σ) ⇒ u(t; θ) ∼ logN (µt, σt)

With uncertainty our deterministic object becomes a probabilistic object

Uncertainty can also enter by being unable to solve the differential
equation analytically

What if the differential equation cannot be solved analytically ?

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 5 / 72



Probabilistic Numerical Computation

Must resort to numerical methods to access approximations to the solution

We now have an additional layer of epistemic uncertainty in that the
implicit function is unknown - we have a Known Unknown

For a general differential equation u̇ = f (u; θ) then the Euler method gives

Un+1 = Un + hf (Un; θ)

For our school boy example with U0 = 1 then
Un+1 = Un + hθUn = (1 + hθ)n

θ ∼ logN (µ, σ)

E{Un} =
n−1∑
k=0

(
n − 1

k

)
hkE{θk} E{U2

n} =

2(n−1)∑
k=0

(
2(n − 1)

k

)
hkE{θk}

The deterministic numerical procedure contributes further to uncertainty
The numerical procedure is now an inference procedure
Defines a measure from which approximate solutions can be drawn
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Probabilistic Numerical Computation

Now then in the unlikely situation where we have complete knowledge of
the initial value and value that θ takes we only have the Known Unknown
to deal with.

Now everything is fully deterministic in the computation of our
approximation. The evolution of the error is fully determined.

en+1 = en + h[u(tn)− Un] + R

Nothing stochastic or random about this.

However we cannot compute the deterministic error or its equation of
evolution - it is unknown

Subjectivist Probability - De Finetti, Ramsey, Jeffreys, Berger, Bernardo
The numerical procedure is now an inference procedure
Defines a measure from which approximate solutions can be drawn
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Probabilistic Numerical Computation

History of Probabilistic Numerical Methods

Tests of Probabilistic Models for Propagation of
Roundoff Errors

T. E. HULL, University of Toronto; J. R. SWEN-
SON, New York University (Ed: J. Traub)
Communications of the ACM, 9(2):108113, 1966.

In any prolonged computation it is gener-
ally assumed that the accumulated effect of
roundoff errors is in some sense statistical.
The purpose of this paper is to give precise
descriptions of certain probabilistic models
for roundoff error, and then to describe a se-
ries of experiments for testing the validity of
these models. It is concluded that the mod-
els are in general very good. Discrepancies
are both rare and mild. The test techniques
can also be used to experiment with various
types of special arithmetic.
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Probabilistic Numerical Computation

Joseph Kadane Persi Diaconis Tony O’Hagan John Skilling
Kadane [1985] Diaconis [1988] O’Hagan [1992] Skilling [1991]

Question: “Is numerical computation a statistical
inference problem?”
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Probabilistic Numerical Computation

History of Probabilistic Numerical Methods, F.M.Larkin

The numerical analyst is often called upon
to estimate a function from a very limited
knowledge of its properties (e.g. a finite
number of ordinate values). This problem
may be made well posed in a variety of
ways, but an attractive approach is to re-
gard the required function as a member of
a linear space on which a probability mea-
sure is constructed, and then use established
techniques of probability theory and statis-
tics in order to infer properties of the func-
tion from the given information. This for-
mulation agrees with established theory, for
the problem of optimal linear approximation
(using a Gaussian probability distribution),
and also permits the estimation of nonlinear
functionals, as well as extension to the case
of “noisy” data.
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Probabilistic Numerical Computation

What is Probabilistic Numerics?1

Definition (Probabilistic Numerics)

Probabilistic Numerics models the function uncertainty and propagates
a probabilistic description of this error through subsequent computations.

1[Hennig, Osborne, Girolami., 2015]
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What is Probabilistic Numerics?1

Definition (Probabilistic Numerics)

Probabilistic Numerics models the function uncertainty and propagates
a probabilistic description of this error through subsequent computations.

Produces probability measures over all unknowns.

Structure in residuals can be propagated through later computations.

Analysis of variance to determine the computational sticking points.

New perspective leads to design of new algorithms.

Safeguards against unwarranted optimism for decision making

1[Hennig, Osborne, Girolami., 2015]
Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 13 / 72



Probabilistic Numerical Computation

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 14 / 72



Differential Equations

Differential Equations
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Differential Equations

Motivation - Data Driven Engineering
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Differential Equations

Motivation - Data Informed Medical and Life Sciences
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Differential Equations

Motivation - Computational Social Science

Burglaries Drugs

Traffic Violence
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Differential Equations

PN for PDEs

A “widely used” linear PDE. Given g , κ, b find u

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

For general D, u(x) this cannot be solved analytically.
The majority of PDE solvers produce an approximation like:

û(x) =
N∑
i=1

wiϕi (x)

We want to quantify the error from finite N probabilistically.
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Differential Equations

History of Probabilistic Numerical Methods

Bayesian Numerical Analysis

P. DIACONIS, Stanford University.

Statistical Decision Theory and Related Topics IV,
1, 163175, 1988.

Seeing standard procedures emerge from
the Bayesian approach may convince
readers the argument isn’t so crazy after
all. The examples suggest the following
program: Take standard numerical anal-
ysis procedures and see if they are Bayes
(or admissible, or minimax). [...] The
Bayesian approach yields more than the
Bayes rule; it yields a posterior distribu-
tion. This can be used to give confidence
sets as in Wahba (1983).
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Differential Equations

PN for PDEs

Inverse Problem: Given partial information of g , b, u find κ

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D
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Differential Equations

PN for PDEs

Inverse Problem: Given partial information of g , b, u find κ

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

Bayesian Inverse Problem:

κ ∼ Πκ Data u(xi ) = yi κ|y ∼ Πy
κ

We want to account for an inaccurate forward solver in the inverse
problem.
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Forward Problem

Forward Problem

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 22 / 72



Forward Problem

Abstract Formulation

Au(x) = g(x) in D

Forward inference procedure:

u ∼ Πu “Data” Au(xi ) = g(xi ) u|g ∼ Πg
u
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Forward Problem

Posterior for the forward problem

Use a Gaussian Process prior u ∼ Πu = GP(0, k). Assuming linearity, the
posterior Πg

u is available in closed-form2.

Πg
u ∼ GP(m1,Σ1)

m1(x) = ĀK (x ,X )
[
AĀK (X ,X )

]−1 g

Σ1(x , x ′) = k(x , x ′)− ĀK (x ,X )
[
AĀK (X ,X )

]−1AK (X , x ′)

Ā the adjoint of A
Observation: The mean function is the same as in symmetric collocation!

2Larkin 1972, [Cockayne et al., 2016, Owhadi, 2014]
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AĀK (X ,X )

]−1 g

Σ1(x , x ′) = k(x , x ′)− ĀK (x ,X )
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Forward Problem

Theoretical Results

Theorem (Forward Contraction)

For a ball Bϵ(u0) of radius ϵ centered on the true solution u0 of the PDE,
we have

1− Πg
u [Bϵ(u0)] = O

(
h2β−2ρ−d

ϵ

)

h the fill distance

β the smoothness of the prior

ρ < β − d/2 the order of the PDE

d the input dimension
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Forward Problem

Toy Example

−∇2u(x) = g(x) x ∈ (0, 1)

u(x) = 0 x = 0, 1

To associate with the notation from before...

Πu ∼ GP(0, k(x , y))

A = − d2

dx2
Ā = − d2

dy2
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Forward Problem

Forward problem: posterior samples

g(x) = sin(2πx)
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Forward Problem

Forward problem: convergence
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(b) Trace of posterior covariance

Figure: Convergence
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Inverse Problem

Inverse Problem
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Inverse Problem

Recap

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

Now we need to incorporate the forward posterior measure Πg
u into the

posterior measure for the inverse problem, κ
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Inverse Problem

Incorporation of Forward Measure

Assuming the data in the inverse problem is:

yi = u(xi ) + ξi i = 1, . . . , n

ξ ∼ N(0, Γ)

implies the standard likelihood:

p(y |κ, u) ∼ N(y ;u, Γ)

But we don’t know u
Marginalise the forward posterior Πg

u to obtain a “PN” likelihood:

pPN(y |κ) ∝
∫

p(y |κ, u)dΠg
u

∼ N(y ;m1, Γ + Σ1)
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Inverse Problem

Inverse Contraction

Denote by Πy
κ the posterior for κ from likelihood p, and by Πy

κ,PN the
posterior for κ from likelihood pPN.

Theorem (Inverse Contraction)

Assume Πy
κ → δ(κ0) as n → ∞.

Then Πy
κ,PN → δ(κ0) provided

h = o(n−1/(β−ρ−d/2))
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Inverse Problem

Back to the Toy Example

−∇ · (κ∇u(x)) = sin(2πx) x ∈ (0, 1)

u(x) = 0 x = 0, 1

Infer κ ∈ R+; data generated for κ = 1 at x = 0.25, 0.75.
Corrupted with independent Gaussian noise ξ ∼ N(0, 0.012)
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Inverse Problem

Posteriors for κ
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Inverse Problem

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field
of a patient, to detect tumors.
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Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field
of a patient, to detect tumors.

c1j

c2j

c3j

c4j

c5j

c6j

c7j

c8j

Many patterns of current cij , j = 1, . . . ,Nc injected through boundary
electrodes tobsi , i = 1, . . . ,Ns
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Inverse Problem

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field
of a patient, to detect tumors.

u(s1)

u(s2)

u(s3)

u(s4)

u(s5)

u(s6)

u(s7)

u(s8)

Resulting voltage measured: yi = x(tobsi )− x(tref) + ϵi
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Inverse Problem

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field
of a patient, to detect tumors.

Governing equations are essentially Darcy’s law:

−∇ · (θ(t)∇x(t) = 0 t ∈ D

θ(tobsi )
∂x

∂n
(tobsi ) = cij i = 1, . . . ,NS
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Inverse Problem

Experimental Set-Up

Experiments due to Isaacson 2004.

Tank filled with saline.

Three targets:

“Heart shaped”: higher
conductivity.
“Lung shaped”: lower
conductivity.

32 equally spaced electrodes.

Simultaneously stimulated for 31
different stimulation patterns.
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Inverse Problem

A Hard Problem. . .

High dimensional (992) observations.

Observations are only of the boundary - weak information.

Target θ(·) is infinite-dimensional.

The “ideal” likelihood L(θ; y) requires exact solution of the PDE.

Posteriors obtained using the PN likelihood

Ln(θ; y) ∝
∫

p(y |θ, x)dPx |a

=⇒ y |θ ∼ N(m1, Γ + Σ1).

Focus on varying the number n of points in T = {ti}ni=1 that are used.

Computation facilitated with Markov chain Monte Carlo, based on the
preconditioned Crank-Nicholson proposal.
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Inverse Problem

Recovered Fields

Posterior means m(t) = Ey [θ(t)]:
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(c) n = 165
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Inverse Problem

Variance Analysis

Ratio of (pointwise) posterior variance v(t) = Vy [θ(t)] computed from the
PN posterior based on Ln and the “standard” posterior based on L̂N with
n = N = 96:
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Inverse Problem

Allen–Cahn

A prototypical nonlinear model.

−θ∇2u(x) + θ−1(u(x)3 − u(x)) = 0 x ∈ (0, 1)2

u(x) = 1 x1 ∈ {0, 1} ; 0 < x2 < 1

u(x) = −1 x2 ∈ {0, 1} ; 0 < x1 < 1

Goal: infer θ
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Inverse Problem

Allen–Cahn: Forward Solutions

Nonlinear PDE - non-GP posterior sampling schemes required, see
[Cockayne et al., 2016].
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Inverse Problem

Allen–Cahn: Inverse Problem
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Integration

Integration
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Integration

Illustrative Application - Integral over Manifold
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Integration

Integrals Over Manifolds

Lo(ωo) = Le(ωo) +

∫
S2
Li (ωi )ρ(ωi ,ωo)[ωi · n]+dπ(ωi )

Lo(ωo) = outgoing radiance

Le(ωo) = amount of light emitted by the object itself

Li (ωi ) = amount of light reaching object from direction ωi

ρ = bidirectional reflectance distribution function

π = uniform distribution on S2

To be computed

for each pixel, and

for each RGB channel.
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Integration

The Problem

Let f be continuous and square-integrable, Π be a probability measure and
X ⊆ Rd . We want to compute (numerically):

Π[f ] =

∫
X
f dΠ ≈

n∑
i=1

wi f (xi ) = Π̂[f ] (1)

High numerical uncertainty when f is expensive or n is small!
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The Problem

Let f be continuous and square-integrable, Π be a probability measure and
X ⊆ Rd . We want to compute (numerically):

Π[f ] =

∫
X
f dΠ ≈

n∑
i=1

wi f (xi ) = Π̂[f ] (1)

High numerical uncertainty when f is expensive or n is small!

Probabilistic Numerics Solution: Bayesian Quadrature3 (BQ) makes use of
prior information about f to guide our choice of {xi ,wi}ni=1 (through a
choice of function space/RKHS).

Measure on Integral push-forward of measure on function.

3[O’Hagan, 1991, Rasmussen and Ghahramani, 2002, Briol et al., 2015a,b]
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Integration

Sketch of Bayesian Quadrature

n=0 n=3 n=6

x

In
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d

true integral
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n

En[Π[f ]] = Π̂BQ = Π[k(·,X )]K−1f
Vn[Π[f ]] = ΠΠ[k(·, ·)]− Π[k(·,X )]K−1Π[k(X , ·)].
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Integration

Theory for Bayesian Quadrature

We consider Sobolev spaces, which are RKHS Hα of varying levels of
smoothness α, which consist of functions in L2 with associated inner
product:

⟨
f , g

⟩
Hα :=

α∑
m=0

⟨dmf
dxm

,
dmg

dxm

⟩
L2

and finite norm
∥∥f ∥∥

Hα(Π)
:= ⟨f , f ⟩1/2Hα .

We study the performance of the method in terms of worst-case error:

e(Π̂; Π,H) = sup
f :∥f ∥H≤1

|Π[f ]− Π̂[f ]|.
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Integration

Theory for Bayesian Quadrature

Theorem (BQ in Sobolev spaces [Briol et al., 2015b])

Let X = [0, 1]d , Π be Unif(X ) and ΠBQ be a BQ rule whose states

{xi}ni=1
i.i.d.∼ π. Then, whenever α > d/2, we have:

e(Π̂BQ; Π,H) = OP(n
−α/d+ϵ)

where ϵ > 0 can be arbitrarily small. Furthermore, let
ID = [Π[f ]− D,Π[f ] + D]. Then:

Pn[I
c
D ] = oP

(
exp(−Cn2α/d−ϵ)

)
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Integration

Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S2 → R.

One such kernel, that leads to a Sobolev space of smoothness 3
2 on S2:

k(t, t ′) =
8

3
− ∥t − t ′∥2 for all t, t ′ ∈ S2.
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Integration

Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S2 → R.

One such kernel, that leads to a Sobolev space of smoothness 3
2 on S2:

k(t, t ′) =
8

3
− ∥t − t ′∥2 for all t, t ′ ∈ S2.

For a certain spherical t-design {ti}ni=1, a convergence rate of

eWCE(M) = O(n−
3
4 ) is achieved by the method M = (A, b) where b is the

Bayesian Quadrature posterior mean - and this is worst-case optimal:
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Integration

Integrals Over Manifolds

Full uncertainty quantification for integrals on manifolds:
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Integration

Prob Integration in Comp Graphics [Briol et al., 2015b]
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3
2 (S2)!
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Integration with Intractable Densities

Integration with Intractable Densities
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Integration with Intractable Densities

Intractable Densities and Stein’s identity

What if π(x) is only known up to a constant?

π(x) =
πc(x)

c
∝ πc(x)

In those cases Π[k(·, x)] is not available in closed form!

We can build an RKHS via kernel which takes into account information
about π, but does not require us to know c4.

Let ϕ(x) be twice differentiable, we can use the Stein transformation

Lϕ(x) := ∇[ϕ(x)π(x)]
π(x)

.

Obtain an RKHS taking account of smoothness of both integrand and
density of distribution - Control Functionals

4Oates et al. [2017], Oates and Girolami [2016]
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Integration with Intractable Densities
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Theory for Control Functionals5

Theorem (Consistency of Control Functionals)

Suppose {xi}ni=1 arise from a Markov chain that targets a density π(x).
Assume X is bounded.

Assume π(x) is bounded away from 0 on X .

Assume π ∈ C 2a+1(X ) & k ∈ C 2b+2(X × X ).

Assume k satisfies “certain boundary conditions”.

Assume the Markov chain is uniformly ergodic.

Then, for f ∈ Hk , there exists h > 0 such that

1hn<h

(
Π[f ]− Π̂[f ]

)2
= OP

(
n−1− 2(a∧b)

d
+ϵ
)
,

where ϵ > 0 hides logarithmic factors.

5[Oates et al., 2016b]
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Example: Computation of Marginal Likelihood

Consider computing the marginal likelihood for a non-linear ODE model

d2x

dt2
− θ(1− x2)

dx

dt
+ x = 0

where θ ∈ R is an unknown parameter indicating the non-linearity and the
strength of damping.

Observations y are made once every time unit, up to 10 units, and
Gaussian measurement noise of standard deviation σ = 0.1 was added. A
log-normal prior was placed on θ such that log(θ) ∼ N(0, 0.25).

Goal: Compute p(y).
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Example: Computation of Marginal Likelihood

Thermodynamic integration is based on the identity

log p(y) =
∫ 1

0
Eθ|y ,t [log p(y |θ)]dt.

where the “power posterior” for parameters θ given data y is defined as
p(θ|y , t) ∝ p(y |θ)tp(θ).

In TI, this integral is evaluated numerically over a discrete temperature
ladder 0 = t0 < t1 < · · · < tm = 1. e.g.

̂log p(y) :=
m−1∑
i=0

(ti+1 − ti )

2
{Êθ|y ,ti [log p(y |θ)] + Êθ|y ,ti+1

[log p(y |θ)]}.

i.e. lots of integrals!
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Example: Computation of Marginal Likelihood
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Figure: Computation of marginal likelihood for non-linear ordinary differential
equations using thermodynamic integration (TI); van der Pol oscillator example.
[Here we show the distribution of 100 independent realisations of each estimator
for log p(y). “Standard TI” is based on arithmetic means. “Controlled TI” is
based on ZV control variates.]
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Intractable Densities and the Cone of Probability Measures

Ongoing work: BQ for densities π(x) only available via samples Doubly
Known Unknowns, optimal approximating projection in convex cone [Oates
et al., 2016a].

n = 10:
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Intractable Densities and the Cone of Probability Measures

Ongoing work: BQ for densities π(x) only available via samples, Doubly
Known Unknowns, optimal approximating projection in convex cone [Oates
et al., 2016a].

n = 100:
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Motivation: Assessment of Cardiac Models

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 63 / 72



Integration with Intractable Densities Application to Marginalisation

Motivation: Assessment of Cardiac Models

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 64 / 72



Integration with Intractable Densities Application to Marginalisation

Motivation: Assessment of Cardiac Models

Mark Girolami (Imperial, ATI) Probabilistic Numerical Computation November 12, 2017 65 / 72



Integration with Intractable Densities Application to Marginalisation

Conclusion

A role for statistical science in numerical computation?

A way to formally account for and quantify uncertainty in pipeline of
computation

Contemporary Sciences and Engineering reliant on increasingly
sophisticated mathematical objects

Numerical computation increasingly resorted to in methods and
applications

Quantifying, accounting for uncertainty fundamental to support
reasoning and subsequent decision making under uncertainty

Understanding the impacts of numerical uncertainty is essential for
any application related to decision making and risk assessment

An exciting research area emerging at the intersection of
mathematics, statistics and computing science - come and join us !
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Research Group at Imperial - PAPER SUBMITTED
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