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Motivation
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Problem statement

What are the workings of cities and regions, and how will they
evolve over time?
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Problem statement

Over half of the world’s population now live in a city.

We should be interested in:

What is happening in the city;
How the city is evolving; and
How can we enable a better quality of life.

Planning, policy and decision making (e.g. retail, health, crime, transport etc.).

Requires an understanding of the underlying mechanisms and behaviours.

On going task of matching socio-economic theories with empirical evidence.

This talk: Improving insights into urban and regional systems with the development of
data-driven mathematical models.
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What can mathematics and statistics offer?

Mathematical models can represent socio-economic theories.

Can help explain the behaviour of complex systems.

Simulations may provide insights:

‘Flight simulators’ for urban and regional planners.
‘What if’ forecasting capabilities.
How does the system respond to change/initiatives?
Which parameters/mechanisms are most important?
What is the long term behaviour?

Mathematical modelling long history (> 50 years) in urban and regional analysis

Equilibrium values and dynamics of attractiveness terms in production-constrained
spatial-interaction models (Harris and A. Wilson, 1978).
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Data-driven methodologies

Data sets are becoming routinely available:

Social media,
Location tracking,
Travel ticketing,
Census data,
Ad-hoc reports etc.

The range of statistical models available is arguably somewhat limited.

Ignoring either data or mathematical models seems unwise.

A structured approach that’s consistent with the available data is desirable.

Build upon well-established mathematical formalisms with this new found data (rather
than throwing the baby out with the bath water).
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Mathematical and statistical challenges

“All models are wrong; some models are useful.”

Urban and regional systems are complex in nature.

An emergent behaviour arises from the actions of many interacting individuals.

Seamless integration of mathematical models with data.

Quality of model vs. quality of data?

Uncertainty should be addressed in the modelling process:
Model uncertainty and system fluctuations;
Parameter uncertainty; and
Observation error and bias.
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Example: The London Retail System

Figure: London retail structure for 2008 (left) and 2012 (right). The locations of retail zones and
residential zones are red and blue, respectively. Sizes are in proportion to floorspace and spending
power, respectively. N = 625 and M = 201.
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The Forward Problem: Modelling Urban Structure
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Urban and Regional Systems

Urban structure:
N origin zones and M destination zones.
Origin quantities {Oi}Ni=1.
Destination quantities {Dj}Mj=1.

Spatial interaction:
Flows of activities at location are denoted {Tij}N,M

i,j , where Tij is the flow from zone i to j .
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Modelling Urban Structure

Urban structure is a vector of sizes:

w = {w1, . . . ,wN} ∈ RM
>0.

Work in terms of attractiveness (log-size):

x = {x1, . . . , xM} ∈ RM , wj(xj) = exp(xj).

Urban structure is realization of the Boltzmann distribution

π(x) =
1

Z
exp

(
− γV (x)

)
, Z :=

∫
RM

exp
(
− γV (x)

)
dx ,

specified by the potential V : RM → R and ‘inverse-temperature’ γ > 0,
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Assumptions for the Potential Function

Interpretation of gradient structure (in terms of net supply/demand Πj):

−∂jV (x) = εΠj , j = 1, . . . ,M.

V (x) = VUtility(x)︸ ︷︷ ︸
Demand

+VCost(x) + VAdditional(x)︸ ︷︷ ︸
Supply

.

1 The potential function V ∈ C 2(RM ,R) is confining in that lim‖x‖→+∞ V (x) = +∞, and

e−γV (x) ∈ L1(RM), ∀ γ > 0.

2 The gradient ∇V satisfies the dissipativity condition: ∃K1,K2 > 0 s.t.〈
x ,−∇V (x)

〉
≤ K1 + K2‖x‖2, ∀ x ∈ RM .
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Modelling Spatial Interaction

Flows from origin zones:

Oi =
M∑
j=1

Tij , i = 1, . . . ,N.

Flows to destination zones (demand function):

Dj =
N∑
i=1

Tij , j = 1, . . . ,M.

Nomenclature: A singly-constrained system since {Oi}Ni=1 is fixed and {Dj}Mj=1 is
undetermined.
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Utility Potential

For a singly-constrained system we have that:

−∂jVUtility(x) = ε

N∑
i=1

vij(x)Oi ,

M∑
j=1

vij(x) ≡ 1.

Can express weights vij in terms of utility functions uij :

−∂jVUtility(x) = ε

N∑
i=1

ϕ(uij)∑M
k=1 ϕ(uik)

Oi . (1)

By inspection, we look for a potential function of the form

VUtility(x) = −ε
N∑
i=1

Oi

{
fi (x) ln

M∑
j=1

ϕ
(
uij(x)

)}
. (2)
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Utility Potential

Inserting Eq. (2) into Eq. (1), we obtain the requirement:

ϕ
(
uij(x)

)∑M
k=1 ϕ

(
uik(x)

) =
dfi (x)

dxj
ln

M∑
j=1

ϕ
(
uij(x)

)
+ fi (x)

dϕ
(
uik(x)

)
dxj

( M∑
k=1

ϕ
(
uik(x)

))−1

.

(3)

Eq. (3) is satisfied for ϕ(x) = exp(x),

uij(x) = αixj + βij ,

provided that each αi 6= 0 and that fi = α−1
i .

We obtain:

VInflow(x) = −ε
N∑
i=1

{
Oi

αi
ln

M∑
j=1

exp
(
uij(x)

)}
.

Mark Girolami (Imperial, ATI) Urban Structure 03-07-2017 16 / 39



Cost and Additional Potentials

Cost potential (linear cost):

− ∂jVCost(x) = −εκwj(xj), j = 1, . . . ,M,

VCost(x) = εκ
M∑
j=1

wj(xj).

Additional potential (constant support):

− ∂jVAdditional(x) = −εδj , j = 1, . . . ,M,

VAdditional(x) = ε

M∑
j=1

δjxj .
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End Result (Boltzmann Distribution)

Urban structure is realization of the Boltzmann distribution

π(x) =
1

Z
exp

(
− γV (x)

)
, Z :=

∫
RM

exp
(
− γV (x)

)
dx ,

ε−1V (x) = −
N∑
i=1

α−1Oi ln
M∑
j=1

exp(αxj − βcij)︸ ︷︷ ︸
Utility (Spatial Interaction)

+κ

M∑
j=1

wj(xj)︸ ︷︷ ︸
Cost

−
M∑
j=1

δjxj︸ ︷︷ ︸
Additional

.
(4)
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End Result (Chosen Utility Function)

The demand flows are

Dj =
N∑
i=1

Oi
exp

(
αxj − βcij)

)∑M
k=1 exp

(
αxj − βcik)

) .
xj := lnwj is the attractiveness of j .

cij is the inconvenience of transporting from zone i to j .

α is the attractiveness scaling parameter.

β is the cost scaling parameter.

uij(xj ) = αxj − βcij is the net utility from transporting from zone i to j .
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Random Utility Models (Alternative Derivation)

Individuals make choices to maximize their (random) utility:

Uij = uij + εij , εij ∼ Gumbel(0, 1).

The probability that individual from zone i makes choice j is:

P
[
Yij = 1

]
= P

[
∩j 6=k {Uij > Uik}

]
=

exp(uij)∑M
k=1 exp(uij)

.

The expectation for all individuals gives the same demand flows as before:

Dj =
N∑
i=1

OiP
[
Yj = 1

]
=

N∑
i=1

Oi
exp

(
αxj − βcij)

)∑M
k=1 exp

(
αxj − βcik)

) .
The utility potential is the (unscaled) expected welfare:

ε−1VUtility(x) = α−1
N∑
i=1

OiE[max
j

Uij ] + const.
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Maximum Entropy Method (Alternative Derivation)

Total welfare (consumer surplus):

Eπ

[
α−1

N∑
i=1

Oi ln
M∑
j=1

exp
(
uij(xj)

)]
= S , (5)

Total size (capacity):

Eπ
[ M∑

j=1

wj(xj)

]
= W , (6)

Expected attractiveness (benefit)

Eπ
[ M∑

j=1

xj

]
= X . (7)

Then the Boltzmann distribution π(x) = Z−1 exp
(
− γV (x)

)
is the maximum entropy

distribution (maximal uncertainty) subject to these constraints.
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Airports in England

α = 0.5

α = 1.0

α = 2.0

Figure: Approximate draws from p(x |θ) using HMC combined with parallel tempering.
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The London Retail System

α = 0.5

α = 1.0

α = 2.0

Figure: Approximate draws from p(x |θ) using HMC combined with parallel tempering.
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Overdamped Langevin Dynamics

With the specification of V (X ), overdamped Langevin dynamics give the Harris and
Wilson model, plus multiplicative noise.

SDE Urban Retail Model

Floorspace dynamics is a stochastic process that satisfies the following Stratonovich SDE.

dWj

dt
= εWj

(
Dj − κWj + δj

)
+ σWj ◦

dBj

dt
,

where
(
B1, . . . ,BM

)T
is standard M-dimensional Brownian motion and σ =

√
2/εγ > 0 is the

volatility parameter.

Fluctuations (missing dynamics) are modelled as Stratonovich noise.
The extra parameter δ to represents local economic stimulus to prevent zones from
collapsing (needed for stability).
The Markov process is well-defined and converges geometrically fast to
π(x) = Z−1 exp(−γV (x)).
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The Inverse Problem: Inferring the Utility Function
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A Hierarchical Model of Urban Structure

Given observation data Y = (Y1, . . . ,YM), of log-sizes, infer the parameter values
θ = (α, β)T ∈ R2

+ and corresponding latent variables X ∈ RM .

Assumption (Data generating process)

Assume that each observation Y1, . . . ,YM is an independent and identical realization of the
following hierarchical model:

Y1, . . . ,YM |X , σ ∼ N (X , σ2I ),

X |θ ∼ π(X |θ) ∝ exp(−U(X ; θ)),

θ ∼ π(θ).
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Joint Posterior Distribution

The joint posterior is given by

π(X , θ|Y ) =
π(Y |X , θ)π(X , θ)

π(Y )
, π(Y ) =

∫
π(Y |X , θ)π(X , θ)dXdθ.

We have a hierarchical prior given by

π(X , θ) =
π(θ) exp(−U(X ; θ))

Z (θ)
, Z (θ) =

∫
exp(−U(X ; θ))dX .

The joint posterior is doubly-intractable

π(X , θ|Y ) =
π(Y |X , θ) exp(−U(X ; θ))π(θ)

π(Y )Z (θ)
.
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Russian Roulette

Figure: On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods. AM
Lyne, M Girolami, Y Atchade, H Strathmann, D Simpson. Statistical Science, 30 (4), 443-467
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Metropolis-within-Gibbs with Block Updates

We are interested in low-order summary statistics of the form

EX ,θ|Y [h(X , θ)] =

∫
h(X , θ)π(X , θ|Y )dXdθ.

X and θ are highly coupled, so we use Metropolis-within-Gibbs with block updates.

X -update. Propose X ′ ∼ QX and accept with probability

min

{
1,
π(Y |X ′, θ) exp(−U(X ′; θ)) q(X |X ′)
π(Y |X , θ) exp(−U(X ; θ)) q(X ′|X )

}
.

θ-update. Propose θ′ ∼ Qθ and accept with probability

min

{
1,
π(Y |X , θ′)Z (θ) exp(−U(X ; θ′)) q(θ|θ′)
π(Y |X , θ)Z (θ′) exp(−U(X ; θ)) q(θ′|θ)

}
.

Unfortunately the ratio Z (θ)/Z (θ′) ratio is intractable!

Mark Girolami (Imperial, ATI) Urban Structure 03-07-2017 29 / 39



Unbiased Estimates of the Partition Function

We can use the Pseudo-Marginal MCMC framework if we have an unbiased, positive
estimate of π(X |θ), denoted π̂(X |θ, u), satisfying

π(X |θ) =

∫
π̂(X |θ, u)π(u|θ)du.

The Forward Coupling estimator (FCE)1 gives an unbiased estimate of 1/Z :

E[S ] = 1/Z .

The idea is to find two sequences of consistent estimators {V(i)}, {Ṽ(i)}, each with the
same distribution, such that V(i) and Ṽ(i−1) are“coupled”.

1Markov Chain Truncation for Doubly-Intractable Inference, C. Wei, and I. Murray, AISTATS (2016)
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Unbiased Estimates of the Partition Function

Requires N estimates of 1/Z using path sampling e.g. annealed importance sampling or
thermodynamic integration, for a random stopping time N.

Coupling between V(i) and Ṽ(i−1) is introduced with a Markov chain that shares random
numbers.

Variance reduction technique.

Then the unbiased estimate is given by

S := V(0) +
N∑
i=1

V(i) − Ṽ(i−1)

Pr(N ≥ i)
.
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The Signed Measure Problem

S can be negative when V(i) < Ṽ(i−1) for many i . This is known as the ‘sign problem’.

Rejecting when S is negative would introduce a bias.

Instead, we note that

E[h(X , θ)] =
1

π(Y )

∫
h(X , θ)π(Y |X , θ)π̂(X |θ, u)π(θ)π(u)dudθdX ,

=

∫
h(X , θ)σ(X |θ, u)π̌(X , θ, u|Y )dudθdX∫

σ(X |θ, u)π̌(X , θ, u|Y )dudθdX
,

where σ is the sign function and we have defined

π̌(X , θ, u|Y ) =
π(Y |X , θ)|π̂(X |θ, u)|π(θ)π(u)∫

π(Y |X , θ)|π̂(X |θ, u)|π(θ)π(u)dudθdX
.
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Pseudo-Marginal Markov Chain

We can sample from π̌(X , θ, u|Y ) using Metropolis-within-Gibbs with block updates.

X -update. Propose X ′ ∼ QX and accept with probability

min

{
1,
π(Y |X ′, θ) exp(−U(X ′; θ)) q(X |X ′)
π(Y |X , θ) exp(−U(X ; θ)) q(X ′|X )

}
.

(θ, u)-update. Propose (θ′, u′) ∼ Qθ,u and accept with probability

min

{
1,
π(Y |X , θ′)|S(θ, u)| exp(−U(X ; θ′))π(θ′)π(u′) q(θ|θ′)
π(Y |X , θ)|S(θ′, u′)| exp(−U(X ; θ))π(θ)π(u)q(θ′|θ)

}
.

Posterior expectations are estimated using

EX ,θ|Y [h(X , θ)] = lim
N→∞

∑N
i=1 h(Xi , θi )σ(Xi |θi , ui )∑N

i=1 σ(Xi |θi , ui )
.
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Airports in England

Figure: Left: Visualization of the posterior-marginals for the latent variables {xj}Mj=1 over a map of
England. Right: Visualization of the posterior demands.

Mark Girolami (Imperial, ATI) Urban Structure 03-07-2017 34 / 39



The London Retail System

Figure: Left: Visualization of the posterior-marginals for the latent variables {xj}Mj=1 over a map of
London Right: Visualization of the posterior demands. Observation data obtained
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Conclusions and Outlook
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Further work and extensions

Investigation of new data assimilation methodologies to calibrate models to data available
at different scales. For example:

Population data;
Cost matrix; or
Time dependent parameters.

Deployment of new methodology to a global problem to provide new insights into urban
retail structure.

Extension of discrete-choice approach to other socio-economic phenomena e.g. crime.

Melding of data and models takes us beyond data analytics.
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Summary

We have developed a novel stochastic model to simulate realistic configurations of urban
and regional structure.

Our model is an improvement on existing deterministic models in the literature, as we
account for uncertainties arising in the modelling process.

We presented a Bayesian hierarchical model for urban and regional systems.

Our model can be used to infer the components of a utility function from observed
structure, rather than flow data.

We have demonstrated our approach using an example of airports in England and retail in
London.
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